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Recent development in the field of modern science and 
medicine such as material science, molecular biology, light-
harvesting systems, analytical and environmental chemistry 
emphasizes the use of BODIPY fluorophore [14]. BODIPY 
(i.e., 4,4-difluoro-4-bora-3a,4a-diaza-5-indacene) deriva-
tives are strongly UV absorbing small molecular probes 
having good photophysical characteristics like high quan-
tum yields, high thermal and chemical stabilities [15–17]. 
Despite of wide applicability, the synthetic access to near IR 
BODIPY dyes is neither facile nor efficient. Many attempts 
to develop NIR probes have been made [18]. However, 
still, there is a lot of scope for the new development of NIR 
probes.

Recently some chalcogen containing small molecular 
probes have attracted the focus of researchers [19]. Main 
challenge for the organochalcogen chemist is to synthesize a 
novel heterocyclic system. In recent past biologically active 
selenium based chalcogen compounds have been discov-
ered and used for redox reactions [20–22]. However, there 
is very little development on chalcogen-containing com-
pounds as sensors, antioxidant, anti-inflammatory, neoplas-
tic, and antifungal capabilities [23–26].

Researchers have shown more interest in synthesis and 
application of organoselenium compounds for the selec-
tive discovery of physiologically significant analytes in 
recent years [27–30]. A variety of fluorophores have been 
developed for better understanding of superoxide, including 

Introduction

In recent decades organoselenium compounds have been 
investigated as fluorophores due to the hard/soft character-
istic of selenium, which enables it to detect certain analytes. 
In the biological system, bioactive chemicals such as thi-
ols, reactive oxygen species (ROS), reactive nitrogen spe-
cies (RNS), and others play a vital role [1–6]. Alzheimer’s 
disease (AD) is the most common type of dementia among 
older people [7–10]. A related problem, mild cognitive 
impairment (MCI) causes more memory problems than nor-
mal for people of the same age but not all, people with MCI 
will develop AD. According to recent studies, the disease 
is supposed to be based on three main hypotheses namely 
Amyloidal cascade, Metal ions, and Reactive Oxygen Spe-
cies [10, 11]. As metal ions and ROS are among the causes 
of this disease it is very important to detect them selectively.

BODIPY and its derivatives constitute an important class 
of compounds in heterocyclic organic chemistry [12, 13]. 
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Abstract
Selenium containing tetraphenyl substituted BODIPY probe was successfully synthesized from respective selenium alde-
hyde and tetraphenyl pyrrole using Knoevenagel-type condensation. The product was characterized using various spectro-
scopic techniques (1 H, 13 C, 77Se, 11B, and 19 F) and mass spectrometry. The probe was found to be selective and sensitive 
towards detection of superoxide over other ROS with a “turn-off” (quenched) fluorescence response. The detection limit 
of the probe was found to be 4.87 µM. The probe reacted with superoxide in less than a sec with a stoke shift of 35 nm.
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fluorescein, dibenzothiazoline cyclohexene, and BODIPY 
[31, 32]. There have been some reports on the use of a phe-
nyl cellulose-modified probe to detect ROS selectively and 
in real-time [33]. The electronic environment around the 
selenium in the probe changes as ROS reacts. This allows 
the spectrophotometric changes in the probe, such as fluo-
rescence “turn-on” and “turn-off” events, which assist in the 
fluorescence detection of the analyte [34–38].

Currently we have focused on the development of a new 
organochalcogen embedded BODIPY derivatives, as well 
as the synthetic modification and spectroscopic charac-
terization of this bright small-molecule. Here in this work 
we have developed near-IR selenium containing tetraphe-
nyl substituted BODIPY (Se-BODIPY) probe for selective 
detection of superoxide.

Experimental

Materials and Methods

All the required chemicals (analytical grade) were obtained 
from commercial dealers and used without being purified. 
All the solvents utilized in the spectrum evaluation were 
of analytical grade or HPLC grade. O–formyl–phenyl sel-
enide and 2,4-diphenyl pyrrole were synthesized by using 
known literature procedure [39, 40]. The silica gel (60–120) 
was used for column chromatography. With Bruker Avance 
300 and 600 MHz instruments the 1 H, 13 C, 11B, 19 F and 
77Se NMR spectra were recorded. For 1 H and 13 C NMR 
spectroscopy, tetramethyl silane (TMS) was used as inter-
nal standard, while Ph2Se2 was used as an external standard 
for 77Se NMR spectroscopy. The NMR spectrum of all the 
compounds were recorded in analytical and HPLC grade 
deuterated solvents. The mass spectra were recorded on AB 
SCIEX 3200 Q TRAP LC/MS/MS spectrometer. Shimadzu 
UV2450 PC spectrometer was used to record UV spectra. 
Shimadzu RF 5301PC Spectrofluorometer was used to 
obtain emission spectra. MicroTOF–QII was used to collect 
HRMS data (Bruker Daltonik).

Synthesis of BODIPY (3)

The Bodipy was synthesized from a reported procedure 
with some modifications [41]. 2-phenylselenyl benzalde-
hyde (0.5 g, 1.90 mmol, 1 eqv.) and 2,4-diphenyl pyrrole 
(0.91 g, 4.19 mmol, 2.2 eqv.) were dissolved in dry DCM 
(25 mL), a catalytic amount of TFA was added and the reac-
tion mixture was stirred overnight at room temperature 
under a nitrogen atmosphere. After complete consumption 
of reactants, 2,3-dichloro-5,6-dicynobenzoquinone (0.86 g, 
3.816 mmol, 2 eqv.) was added and the reaction mixture 

was stirred for 1 h at room temperature. After 1 h, triethyl-
amine (3.85 g, 38.167 mmol, 20 eqv.) was added and stirred 
the reaction for 15  min, then BF3.Et2O (5.41  g, 38.167 
mmol, 20 eqv.) was added. Stirring of the mixture was 
continued for an additional 3  h at room temperature. The 
progress of the reaction was followed by TLC. The reac-
tion was quenched with water and extracted with dichlo-
romethane (3 × 25 mL). The combined organic layer was 
dried over Na2SO4 and the solvent was removed in vacuum 
under reduced pressure. The crude product was purified by 
silica-gel column chromatography, eluting with an ethyl 
acetate-hexane (1:3). Dark purple colour solid product (3) 
was obtained in the yield of 0.31  g (22%). The targeted 
BODIPY (3) was confirmed by 1  H, 13  C, 77Se, 11B, 19  F 
NMR spectroscopy, as well as HR-LCMS. Spectroscopic 
Data:- 1 H NMR (600 MHz, CDCl3) δ ppm: 7.93–7.92 (dd, 
J = 8.0, 1.4 Hz, 4 H), 7.57–7.55 (dd, J = 8.0, 1.4 Hz, 2 H), 
7.43–7.41 (m, 6  H), 7.36–7.34 (m, 3  H), 6.96–6.95 (d, 
J = 7.1 Hz, 4 H), 6.89–6.84 (m, 6 H), 6.79–6.77 (dd, J = 7.3, 
1.6 Hz, 1 H), 6.50 (s, 2 H), 6.38–6.35 (m, 2 H), 6.11–6.10 
(dd, J = 7.7, 1.1  Hz, 1  H); 13  C NMR (151  MHz, CDCl3) 
δ ppm: 156.4, 146.7, 142.6, 135.6, 135.3, 134.1, 131.7, 
131.6, 131.3, 130.3, 128.6, 128.5, 128.5, 128.4, 127.9, 
127.7, 127.1, 126.9, 126.6, 125.7, 125.5, 123.2, 122.6, 76.3, 
76.2, 76.0, 76.0, 75.8; 77Se NMR (114 MHz, CDCl3) δ ppm: 
421; 11B NMR (193 MHz, CDCl3) δ ppm: 0.45; 19 F NMR 
(565 MHz, CDCl3) δ ppm: -130.02 (ddd), -133.22 (m); ESI-
MS calculated for (C45H31BF2N2Se + Na)+: 751.52, found 
m/z 751.16 (M + Na)+.

Synthesis of Oxidized Probe (4)

Probe 3 (0.10 g, 0.137 mmol) was dissolved in DMSO-d6 
(0.6 mL) and KO2 (0.097 g, 1.37 mmol, 10 eqv.) was dis-
solved in 0.5 mL DMSO-d6. The reaction mixture was 
stirred at room temperature for 30 min. The progress of the 
reaction was monitored by TLC. The oxidized probe (4) 
was characterized without isolation and confirmed by 1 H 
NMR spectroscopy, and mass spectrometry. Spectroscopic 
Data;- 1 H NMR (300 MHz, DMSO-d6) δ ppm: 8.01-8.0 (d, 
J = 3.6 Hz, 1 H), 7.83–7.82 (d, J = 3.6 Hz, 2 H), 7.67–7.65 (d, 
J = 4.9 Hz, 4 H), 7.55–7.54 (d, J = 4.1 Hz, 2 H), 7.34–7.32 
(d, J = 4.5 Hz, 3 H), 7.20–7.19 (d, J = 3.4 Hz, 8 H), 7.09–
7.08 (d, J = 4.5 Hz, 4 H), 6.80–6.78 (m, 3 H), 6.66 (s, 1 H), 
6.33 (s, 1 H), 5.89–5.86 (m, 2 H). ESI-MS calculated for 
(C45H31BF2N2SeO)+: 743.52, found m/z 743.5 (M)+.

Photophysical Measurements

All photophysical study was conducted in DMSO. ROS 
(H2O2, NaOCl, tBuOOH, •OH, and tBuO•; 0.1  M) and 
biothiols (glutathione, L–cysteine, D–L–homocysteine, 
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N–acetyl–L–cysteine, and D-methionine; 0.1 M) were pre-
pared in double distilled water, whereas KO2 (0.1 M), was 
prepared in DMSO. Before absorbance and fluorescence 
measurements, the probe (5 µM) was incubated for 2 min 
with ROS and biothiols at rt. All solutions were excited at 
a wavelength of λex = 573 nm and emission was recorded at 
λem = 608 nm, excitation and emission slit width was taken 
5/5 nm respectively.

Selectivity and Sensitivity of the Probe in the 
Presence of ROS

The probe (3) was screened with ROS (KO2, H2O2, 
tBuOOH, NaOCl, •OH, and tBuO•; 800 µM) and biothiols 
(glutathione, L–cysteine, D–L–homocysteine, N–acetyl–L–
cysteine, and D-methionine; 800 µM). After 2 min of the 
incubation period, UV-Vis and fluorescence spectra were 
taken.

Interference Study

Probe (3) (3 mL, 5 µM) and superoxide (24 µL, 800 µM) 
were introduced to each vials followed by other ROS and 
biothiols of 24 µL (800 µM) each. After 2 min of incuba-
tion, fluorescence was recorded at an excitation wavelength 
of λex = 573 nm.

Detection Limit

An increase in concentration measurements were carried 
out to determine detection limit. 3 mL (5 µM) of the probe 
(3) in the presence of increasing concentrations of super-
oxide (0-800 µM; 0–24 µL) was incubated for 2 min and 
fluorescence spectra were recorded at 573 nm. The limit of 
detection was calculated by fluorescence linear regression 
curve. The standard deviation of the probe was determined 
by recording emission of probe 3 for ten times at 573 nm. 
The fluorescence intensity at 608  nm was plotted against 

the concentration of superoxide to evaluate the slope. The 
detection limit was calculated by using equation.

LOD = 3σ/k.
Where, σ is standard deviation of the probe and k is the 

slope of plot of fluorescence intensity vs. concentration of 
superoxide.

Time-dependent Study

The time-dependent emission study was performed with 
probe 3 (3 mL, 5 µM) in the presence of superoxide (24 µL, 
800 µM) for a period of 1 h. The excitation and emission 
wavelength for this kinetic experiment was 573 and 608 nm, 
excitation and emission slit width was 5/5 nm respectively.

Results and Discussion

Design and Synthesis of Probe 3

2,4-diphenyl pyrrole was synthesized from the chalcone 
(1,3-diphenyl-2-propen-1-one) by the aldol condensation 
reaction of acetophenone with benzaldehyde in the pres-
ence of sodium hydroxide (Scheme 1) [42]. Chalcone was 
converted into its nitro derivative (1,3-diphenyl-4-nitro-
butane-1-one) by using a Michael addition process using 
nitromethane and diethylamine as a base [43]. 2,4-diphe-
nylpyrrole (1) was synthesized according to literature by 
reacting nitro-chalcone with morpholine, sulphur, and 
ammonium acetate [39]. 2-phenylselenyl benzaldehyde (2) 
was synthesized using reported literature method, where 
2-chlorobenzaldehyde was reacted with diphenyl diselenide 
in presence of DTT and K2CO3 in DMF [40]. Compound 2 
was confirmed by the 1 H NMR spectroscopy before further 
use.

Then 2-phenylselenyl benzaldehyde 2 was con-
verted into the corresponding dipyrromethane by reac-
tion with 2,4-diphenyl pyrrole in presence of the catalytic 
amount of trifluoroacetic acid (TFA). The in situ formed 

Scheme 1  Synthesis of Com-
pound 3
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biothiols (GSH, Cys, Hcy, NAC, D-Meth) showed maxi-
mum absorbance at 573 nm whereas probe 3 with superox-
ide did not show any absorbance in the UV-visible spectrum 
(Figs. 1 and 2). The emission spectra revealed the quench-
ing in fluorescence of probe 3 after reacting with superox-
ide (Fig. 1, S12-13). However, probe 3 and the probe with 
other ROS showed the emission peak at 608 nm. Similarly, 
the probe 3 with biothiols exhibited the emission peak at 
608 nm. Thus, these results suggested the selectivity of the 
probe for superoxide over other ROS and biothiols with 
turn-off fluorescence.

Next, the interference study of the probe with superoxide 
in presence of other ROS was performed. Probe 3 (3 mL, 
5 µM) and superoxide (800 µM) were added to each vial, 
followed by other reactive oxygen species such as H2O2, 
NaOCl, tBuOOH, •OH, and tBuO• (800 µM) (Fig.  3) and 
fluorescence was recorded. From the study it was observed 
that there was no effect of the other ROS on the fluorescence 
intensity of the probe with superoxide.

An increase in the concentration study was performed 
with probe 3 (5 µM) in presence of superoxide (0-800 
µM) to reveal the detection limit of the probe (Fig.  4). 
With increasing concentration of superoxide (0-800 µM), 
a steady decrease in fluorescence intensity of the probe 
(3) was observed. The detection limit was deduced using 

dipyrromethane was then treated with 2,3-dichloro-5,6-di-
cynobenzoquinone (DDQ) followed by triethylamine and 
boron trifluoride ethyletharate in dry DCM. The reaction 
was monitored by TLC and the crude product was purified 
by column chromatography (yield 22%). The product was 
characterized by common spectroscopic techniques (1  H, 
13 C, 11B, 19 F and 77Se NMR) and mass spectrometry (Figs. 
S1-9).

The 1  H NMR spectrum of probe  3 showed a singlet 
at 6.50 ppm for proton attached to pyrrole ring carbon 
(HC = C-) (Fig. S1). The 77Se NMR signal of probe 3 was 
observed at 421 ppm (Fig. S4). The HR-LCMS of the probe 
(3) showed a (C45H31BF2N2Se + Na)+ ion peak at 751.16 
with a selenium isotopic pattern (Fig. S9). Thus, the spec-
troscopic analysis confirmed the successful formation of 
probe 3.

Photophysical Studies of Probe 3

Selenium-containing probe 3 was prepared to detect the 
responses arising from the oxidation of selenium by ROS. 
The probe was incubated with different ROS and biothiols 
for 2 min before recording absorption and emission spec-
tra. In UV-visible study, the probe (3) and the probe with 
other ROS (H2O2, NaOCl, tBuOOH, •OH and tBuO•) and 

Fig. 2  (Left) UV–absorption 
spectra of biothiols (800 µM) 
(GSH, Cys, Hcy, NAC, D-Meth) 
with probe 3 (5 µM) in DMSO 
incubated for 2 min at rt. (Right) 
Emission spectra of probe 3 (5 
µM) in DMSO with biothiols 
(800 µM) (GSH, Cys, Hcy, NAC, 
D-Meth) incubated for 2 min at rt 
(λex = 573 nm, λem = 608 nm), slit 
width 5/5 nm

 

Fig. 1  (Left) UV–absorption 
spectra of probe 3 (5 µM) in 
DMSO with ROS (800 µM) 
(KO2, H2O2, NaOCl, tBuOOH, 
•OH and tBuO•) incubated for 
2 min at rt. (Right) Emission 
spectra of probe 3 (5 µM) in 
DMSO with ROS (800 µM) 
(KO2, H2O2, NaOCl, tBuOOH, 
•OH and tBuO•) incubated 
for 2 min at rt (λex = 573 nm, 
λem = 608 nm), slit width 5/5 nm
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ion peak with selenium isotopic pattern was observed for 
compound 4 after subjecting to mass spectrometry with 
calculated mass for (C45H32BF2N2SeO)+ of 743.5 [M]+ and 
observed peak at m/z 743.5 for [M]+ (Fig. S11). This con-
firmed the oxidation of selenium by superoxide.

The phenyl selenide group is unable to transport elec-
trons to the BODIPY moiety once selenium is oxidized by 
superoxide, abolishing the Photoinduced Electron Trans-
fer (PET), and the probe produces a fluorescence turn-off 
response. The PET mechanism has already been reported in 
depth in the literature [44, 45].

Eq. 3σ/k and was found to be 4.87 µM for superoxide (Fig. 
S14).

For the time-dependent emission spectrum, KO2 (24 µL, 
800 µM) was added to probe 3 (3 mL, 5 µM) and spectrum 
was recorded in DMSO at rt (Fig. 5). Fluorescence of the 
probe with superoxide was quenched and found to be stable 
for longer time which confirmed the photostability with 
extremely quick response time for superoxide.

To study the fluorescence turn-off reaction mechanism, 
the reaction of probe 3 with KO2 was carried out for 30 min 
in DMSO-d6 (Scheme 2). The total consumption of the probe 
was monitored by TLC. Product (4) of the reaction was ana-
lyzed by 1  H NMR spectroscopy and mass spectrometry 
(Figs. S10-11) without isolation. The 1 H NMR spectrum of 
compound 4 showed a characteristic up-field shifts in pro-
ton signals as compared to probe 3 (Fig. S10). Molecular 

Fig. 5  Time-dependent emission spectrum of probe 3 (5 µM) with KO2 
(800 µM) in DMSO at rt (λex = 573 nm, λem = 608 nm), slit width 5/5 
nm

 

Fig. 4  Emission spectra of probe 3 in DMSO with increasing concen-
tration of KO2 (0-800 µM) incubated for 2  min at rt (λex = 573  nm, 
λem = 608 nm), slit width 5/5 nm

 

Fig. 3  Fluorescence spectra of probe 3 (5 µM) and superoxide (800 
µM) in presence of (Left) ROS (H2O2, NaOCl, tBuOOH, •OH and 
tBuO•) (800 µM) (1 = probe, 2 = probe + KO2, 3 = probe + KO2 + H2O2, 
4 = probe + KO2 + NaOCl, 5 = probe + KO2 + tBuOOH, 6 = probe + KO2 
+ •OH, 7 = probe + KO2 + tBuO•); (Right) Biothiols (GSH, Cys, 

Hcy, NAC, D-Meth) (800 µM) (1 = probe, 2 = probe + KO2, 
3 = probe + KO2 + GSH, 4 = probe + KO2 + Cys, 5 = probe + KO2 + Hcy, 
6 = probe + KO2 + NAC, 7 = probe + KO2 + D-Meth) incubated for 
2 min at rt, (λex = 573 nm, λem = 608 nm), slit width 5/5 nm
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