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Let M be an le-module over a commutative ring with unity. In this paper, an associated graph G(M) of M with all
nonzero proper submodule elements of M as vertices has been introduced and studied. Any two distinet vertices
n and rn are adjacent if n+m = e. Some algebraic, topological and, graph theoretic properties of le-modules have
been established. Also, it is shown that the Beck’s conjecture is true for coatomic le-modules.
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1. INTRODUCTION:

A. K. Bhuniya and M. Kumbhakar [(Bhuniya and Kumbhakar, 2018, 2019)] introduced and
studied a new algebraic structure, which is called an le-modules. An le-module M over a com-
mutative ring I is a complete lattice ordered monoid (M, +, <, ¢) with greatest element e and
module like action of R on it. A. K. Bhuniya and M. Kumbhakar motivated to study abstract
submodule theory from the study of abstract ideal theory, in particular multiplicative lattices and
lattice modules. For more details about multiplicative lattices and lattice modules one may refer
[(Narayan Phadatare and Kharat, 2019)|, [(Ballal and Kharat, 2015)]. The notion of a graph of
zero-divisors of a commutative ring was introduced in [(Beck, 1988)] , by studying the coloring of
a graph constructed by all elements of a commutative ring R. In [(A. Abbasi, 2015)] A. Abbasi,
H. Roshan-Shekalgourabi, D. Hassanzadch-Leleckaami introduced and studied associated graph
on modules over commutative rings. Elham Mchdi-Nezhad and Amir M. Rahimi studied similar
type of graph and proved some new results on it. Narayan Phadatare, Sachin Ballal and Vilas
Kharat studied graph on multiplication lattice modules by using a non-small clement. Also they
have introduced semi-complement graph on lattice modules.

In this paper we have introduced and studied associated graph on le-module. We have obtained
analogous results as in paper [(A. Abbasi, 2015)] and for it we got some new algebraic results for
le-modules.

1.1 Definition:

[(Bhuniya and Kumbhakar, 2018, 2019)| An le-semigroup (M, +, <, e) is a commutative monoid
with the zero element 0y and is a complete lattice with the greatest element e, that satisfies
m+ (Vierm;) = Vier(m +m;). Let (M, 4+, <) be an le-semigroup with the zero element 0y and
R be a commutative ring with unity 1. Then M is called an le-module over R if there is a
mapping i x M — M satisfying:

(1) r(m1 + ma2) = rmq + rma
(2) (r1 +r2)m < rym+ram

(3) (rira)m = ri(ram)
(4) 1gm=m; 0pm =10y = 0y
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(5) m(Vierm;) = Vier(rm;) holds for all r,ry, 7m0 € R, m,mi,mo € M and 7 € I (I is an indexed
set).

A graph G is defined as the pair (V(G); E(G)), where V(G) is the set of vertices of G and
E(G) is the set of edges of G. For two distinet vertices n and m, n — m means that n and m
are adjacent. The degree of a vertex n of graph G which is denoted by deg(n) is the number
of edges incident on n. If |V(G)| = 2, a path from n to m is a scries of adjacent vertices
n—uwv —uvy —...— v, —m. Ina graph G, the distance between two distinet vertices noand m,
denoted by d(n;m) is the length of the shortest path connecting n and m. The diameter of a
graph G is defined as diam(G) = sup{d(n;m)|n,m € V(G)}. A graph G is called connected, if
for any vertices n and m of G there is a path between n and m. The girth of G, is the length
of the shortest eyele in G and it is denoted by g(G). A graph is called complete if cach pair of
vertices is adjacent. A complete graph with n—vertices is denoted by K,,. An r — partite graph
is one whose vertex set can be partitioned into r subsets such that no edge has both ends in
any one subsct. A complete r — partite graph is one cach vertex is joined to every vertex that
is not in the same subset. The complete bipartite (i.e, 2-partite) graph with part sizes m and n
is denoted by Kip,n. A clique of a graph is its maximal complete subgraph and the number of
vertices in the largest clique of a graph G, denoted by w(G), is called the eligue number of G.
A graph whose vertices-set is empty is a null graph and a graph whose edge-set is empty is an
empty graph. Color- ing of a graph G is an assignment of colors (clements of some set) to the
vertices of (7, one color to cach vertex, so that adjacent vertices are assigned distinet colors. If n
colors arc used, then the coloring is referred to as an n — coloring. If there exists an n-coloring of
a graph G, then G is called n — colorable. The minimum n for which a graph G is n-colorable is
called the chromatic number of G, and is denoted by x(G). The core of a graph G is the union
of cycles in G. A vertex x of a graph G is called an end vertex if deg(x) = 1. For further study
of graph theory see [(Bondy and Murty, 2008)].

1.2 Definition:

An clement n of an le-module M is said to be a submodule element if n+n,rn < n for all r € R.
We denote the set of all submodule clements of M by Sub(M).

Submodule clements are the ones on which the theory of an le-module is being studied. Observe
that if n,m € Sub(M) then n+m € Sub(M) and rn € Sub(M), and note that n +n = n for all
n € Sub(M).

1.3 Proposition:

Let M be an le-module. Then

(1) n =0, for n € Sub(M).

(2) n+m =nVmfor n,m € Sub(M).

(3) f n+m # nVmimplics n £ m and m % n for n,m € Sub(M).
(4) In<mthenk+n<k+mforalnkmeM.

(5) If n,m € Sub(M) then n Am € Sub(M).

ProOOF. (1) We have rn < n for all » € . Hence On = 0 < n for n € Sub(M).

(2) nvV(n+m)=(nm+0)V(n+m)=n+(0Vm)=mn+m and therefore n + m = n. Similarly
n+m = m and consequently, n +m = n 'V m.

(3) If n+m # nVm then n+m > nVm. On contrary suppose that n < m then n vV m = m.
Therefore we have e < n+m. But then m+V{m,n} = m+m = m # n+m = V{n+m,n+n}
implies that M is not an le-module. Hence n % m and similarly m j{_ 1.

(4) By the definition of le-module, we have (E+n)V (k+m) =k+ (nVm) =k +m.

International Journal ol Next-Generation Compuling - Special Issue, Vol. 12, No. 2, April 2021.



282 . Sadashiv Puranik, Sachin Ballal and Vilas Kharat

(5) We have n Am < n then by (4), nAm+nAm <nAm+n < n+n = n Similary
nAm+nAm < m. Consequently, nAm+nAm<nAm. lfre Rthenr(nAm)<rn<n
and also r(n Am) < m implies that 7(n A m) < n Am. Hence n A m is submodule clement.

O

In particular, if 0 is the smallest element in M, ie., 0 < nforallme M thenn+m =nvm
for all n,m € M

We call p € Sub(M) as prime element if for r € R and n € M,rn < p implics re < p or n < p.
We call g € Sub(M) as mazimal element if ¢ # e and for any n € Sub(M) with ¢ < n < e cither
g =n or n = e. We denote the set of all maximal submodule clements by Max(M).

1.4 Lemma:

[(Bhuniya and Kumbhakar, 2018, 2019)] Let M be an le-module then every maximal element in
M is prime.

1.5 Lemma:

Let n,m € Sub(M). If n+m = e for all m £ n then n € Maxz(M).

PRrROOF. If n ¢ Max(M) then there exists k € Sub(M) such that k& > n. Therefore n+k =e
but as k > n by Proposition [1.3(3)] we have n + k = k, a contradiction. [J

In this paper we associate a graph G(M) on Sub(M) as follows: The vertex set of the graph
G(M) is the set of all nonzero proper submodule clements of M and two distinet vertices n and
m are adjacent if n + m = e and we call this graph as associated graph of le-module.

1.6 Remark:

Note that for n,m € G(M), if n+m = e and n < k then by Proposition [1.3(4)] &£+ m = ¢ hence
deg(n) < deg(k).

1.7 Example:

Let M = {0,a,b,c,d, e} be an le-module over ring Zs with its lattice diagram and its graph with
+ is given in the table and usual multiplication with clements of the ring i.c 0z = 0 and 1z = =
for all z € M. Note that G(M) = {a,b,¢,d} and Sub(M) = M.

+{0la|blc|dl|e
. . . ®

0Of0la|blec|d]|e @

alala|blc|d]|e

blb|b|ble|e]|e

clelelelelele 2 @
d|d|d|e|e|d]e
clelelelelele @

[ ]

G(M)

1.8 Definition:

A submodule clement n of an le-module M is called superfluous (or small) if for every m €
Sub(M), n+m = e implics m = e. Note that 0 is always superfluous element but e is not
superfluous.

1.9 Definition:

An le-module M is said to be a multiplication le-module if every submodule clement n of M can
be expressed as n = Ie for some ideal [ of IR, where Ie = V{Z?—n rielk € N,r; € I} [(Bhuniya
and Kumbhakar, 2018, 2019)]
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1.10 Lemma:

M is multiplication le-module if and only if n = (n : ¢)e,Vn € Sub(M) where (n :e) = {r €
R|re < n}.[(Bhuniya and Kumbhakar, 2018, 2019)]

1.11 Definition:

An le-module M is called coatomic if for every n of M there exists m € Max(M) such that
7L % 17

1.12 Definition:

An le-module M is called simple if 0 and e are the only submodule elements of M.

1.13 Definition:

The radical of an le-module M is the smallest submodule element if exists say, n € M, such that
n = m for every superfluous clement m of M. Otherwise it is equal to e. We denote the radical
of an le-module M by Rad(M).

2. MAIN RESULTS:
2.1 Lemma:

Let M be a coatomic le-module then Rad(M) is a superfluous clement and Rad(M) = Apenrax(anym.

PROOF. Let [ be a superfluous clement and there exists m € Maxz(M) with [ £ m. Then
[ +m = e and [ being superfluous implies m = e, a contradiction. Therefore | < m for all
m € Max(M) and hence | < Apemaz(anym for any superfluous element [ Thus we have
Rad(M) < Apenmaz(arym. It is enough to prove that A,,carae(arym is a superfluous clement.
Suppose Ay,eMar(anym +n = e for some n € Sub(M) then n < m; for some m; € Max(M) then
Asme Maz(M)M + My = e but Ape prae(anym < my implies Ay, e apran(any™m + my = my, a contradic-
tion. Hence Ay, e nraz(arym is a superfluous element and hence Rad(M) = Apueprananym O

2.2 Theorem:

Let M be a coatomic le-module and n,m € Sub(M). Then n < Rad(M) if and only if n is
superfluous.

PRrROOF. Suppose that n < Rad(M) and n is not superfluous i.c., there exists m € Sub(M)
with n 4+ m = e and m < e. Since M is coatomic, there exists k& € Max(M) with m < k. This
implies that n +m < k+ k = k < e, a contradiction. Conscquently m = e.

Conversely suppose that n is superfluous and n j_f Rad(M). Therefore there exists m €
Max(M) with n j{_ m. Which implies n + m = ¢ and since n is superfluous we have m = ¢, a
contradiction. Consequently n < Rad(M). O

2.3 Proposition:

[(Bhuniya and Kumbhakar, 2018, 2019)] Let M be an le-module and = € M. Then for submodule
clements k,[,n of M,

(1) I <nimplics (I :z) € (n:x) and (k:n) C (k:1);

(2) (IAn:k)y=({:kE)nN(n:k)

2.4  Theorem:

Let M be a multiplication le-module and n,m € Sub(M). If p is a prime submodule element of

M with n Am < p, then n < p or m < p.

PROOF. Suppose that p is a prime submodule clement of M with n A m < p. Then by
Proposition[2.3] (n Am : ¢) C (p : e) therefore (n Am :e) = (n:e)N(m:e) C (p:e). Let
r1 € (n:e)and ro € (m:e) with 71,70 ¢ (p: e). Then rie < n and ra2e < m and this implies
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riree < nAm < p. But since p is prime, we have rie < porre < p,ic.,r € (p:e)orr € (p:e),
a contradiction. Therefore (n:e) C (p:e) or (m:e) C (p:e). Now, since M is a multiplication
le-module, by Lemma[1.11] we have n = (n:e)e < (p:ele=porm = (m:ele< (p:ele=p.
Consequently n <porm <p. 0O

2.5 Corollary:

Let M be a coatomic multiplication le-module with Max(M) = {m;|i € I} and 0 as smallest
clement. Then for any nonempty proper finite subset A of I, there exists proper submodule
clement, say m such that A,cym; +m =e

PROOF. On contrary suppose that there does not exists such m. Then by Theorem|2.2]
Nieam; < Rad(M) < mj for all j € I and j7 ¢ A. Since every maximal clement is a prime
clement by Lemma[1.5], then by Theorem([2.4] we have m; < m; for some i € A, a contradic-
tion. [

Note that if {M;|1 < i < n} is a family of le-modules over ring R then M = [ | M; is also
an le-module over R with coordinate-wise addition, scalar multiplication and ordering. Also if
m; € Sub(M;) for ¢« = 1,2,...n then [, m; € Sub(M). In the following theorem we have
discussed the graph structure on product of simple le-modules

2.6 Theorem:

Let M =[], M; where cach M; is a simple le-module then G(M) is a connected n—partite
graph.

PROOF. Let 0 and e; be the only submodule elements of M; for ¢ = 1,2,...,n. Then note
that Sub(M) = {[[;_, aila; = 0 or e;}. Let [];_, a; and ]}, b be any two nonzero proper
submodule elements of M. If [0 a; + [, b = [1;; e then [T}, a; and [];", b; arc adjacent.
Suppose that they are not adjacent. Then we have following two cases:

Case 1) If there exists j such that a; = b; = ¢; then Hf_l ¢; 18 a proper submodule element of
M with ¢; = e; for i # j and ¢; = 0 for i = j. Then [[}" | a; and [ | b; are both adjacent to
1L e N

Case ii) If there does not exist j such that a; = b; = e; then take []" | ¢; such that ¢; = 0 if
a; = e; and ¢; = e; if a; = 0. Similarly, choose submodule clement Hi‘_l d; related to Hi‘_l b;.

3 . . T T L] - T T
Tl:l(:n [T, ai is adjacent to J[;; ¢; and [];_, b; is adjacent to J];_; d;. Note that J];_; ¢; and
111, di are adjacent because ¢; = d; = 0 and this will imply a; = b; = e;.

Therefore G(M) is a connected graph. Now let V; =[], m; with m; = ¢; for 0 <i < j — 1,
mj = 0and m; = 0 or ¢; for j+1 <4 < n. Henee no two vertices of V; are adjacent. Consequently
G(M) is a connected n—partite graph. [

Sachin Ballal and Vilas Kharat studied Zariski topology on lattice modules [(Ballal and Kharat,
2015)]. In [(Ballal and Kharat, 2019)|, they have topologize minimal spectrum of multiplication
lattice modules . In [(Bhuniya and Kumbhakar, 2018)|, Bhuniya and Kumbhakar studied prime
spectrum of an le-module. Let Spec(M) = {p € M|p is a prime submodule clement of M}. For
n € Sub(M), we denote V(n) = {p € Spec(M) : n < p} and v(M) = {V(n)|n € Sub(M)}.
If v(M) is closed under finite unions then there exists a topology on Spec(M) and we call this
topology the quasi-Zariski topology and in this case M is called the top le-module. Note that
associated graph on Spec(M) is a subgraph of G(M) and we denote it by GSP*¢(M).

In the following result, we establish a relationship between topology on Spee(M) and the graph
on it.

2.7 Theorem:

Let M be a non-primeless top le-module. Then G“‘"}”"“’(M' ) is a complete graph if and only if
Spec(M) is a Ti-space.
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PROOF. Suppose GP*(M) is a complete graph. Let p,q € Spec(M) with ¢ € V(p). This
implies p < q. If p # q and GS?'""(JM ) is a complete graph then p + g = e implies ¢ = e. Tor
p<qimpliecs q<p+q<qg+q=gq,ic p+q=q. Butq+# e implics V(p) = {p} is a closed set.
Consequently Spec(M) is a Ty —space.

Conversely, suppose that Spec(M) is a Ty —space. Therefore, {p} is closed for all p € Spec(M).
Note that {p} = N;V(g;), where j € I for some index set I and if p < ¢ then ¢; < p < ¢ for
all j. This implies g € N;V(g;) and therefore p = g and hence V(p) = {p} . Thus every prime
submodule clement is maximal and hence p # ¢ implies p + ¢ = e. Consequently GSP¢¢(M) is a
complete graph. O

Next Corollary establish the relation between Spec(R) and GSP¢¢(M).

2.8 Corollary:

Let M be non-primeless multiplication le-module. If Spec(R) is a T —space then GSP*(M) is a
complete graph.

PrROOF. Suppose that p,q € Spec(M) with p € m Then V(g) 2 E which implies ¢ < p
and therefore (g : €) € (p : e). Since Spec(R) is a T} —space we have (¢ : ¢) = (p : ¢) and
therefore by Lemmall.11] ¢ = (q : e)e = (p : €)e = p since M is a multiplication le-module.
Hence {q} = {q} i.c., {q} is a closed sct in Spec(M). Therefore Spee(M) is a Ty —space. By
Theorem|2.7] GSP¢¢(M) is a complete graph. [J

The Converse of the Corollary(2.8] is not necessarily true. See the following example.

2.9 Example:

Let M = Z over R = Z be a multiplication le-module with respeet to n+m = g.c.d(n,m), rn is
the usual multiplication for r € R, n € M and m = n if and only if m divides n. Here note that
Spec(R) = {pZ|p is a prime number } and Spec(M) = {p € Z|p is a prime number }. Note that
GSPe¢(M) is a complete graph even though Spee(R) is not Ty —space.

M GoPec(M)

2.10 Theorem:
Let M be an le-module. Then Rad(M) = 0 if and only if G(M) is connected.

PROOF. Suppose that Rad(M) = 0 and mq,ms € G(M) with my # ms. Note that my and
msy arc not superfluous. Then there exist nonzero proper submodule clements ny and ny with
mi +mny; = e and ms +ns = e. Then my and ny are adjacent and also mo and ns are adjacent. If
ni +ny = e then nq and ns are adjacent and there is a path between my and mo. If ny +ns # ¢
then my + (n1 + n2) = e and ma + (n1 + n2) = e and therefore there is a path between my and
ms. Consequently, G(M) is connected.
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Conversely, suppose G(M) is connected and Rad(M ) # 0. Then there exists nonzero superflu-
ous clement m such that m < Rad(M). Since m is superfluous m + [ = e for some | € Sub(M)
implies [ = e i.e., m is an isolated vertex of G(M ), a contradiction. Therefore Rad(M) =0 [

2.11 Corollary:
Let M be a coatomic le-module. If G(M) is a tree then |Max(M)| = 2.

PROOF. Since G(M) is a tree, G(M) has no cycle which implies |[Max(M)| < 3 and by The-
orem|[2.10] G(M) is connected implies Rad(M) = 0 and therefore |Max(M)| > 1, consequently
|Maz(M)|=2 O

Following Theorem establish a Beck’s conjecture for coatomic le-module.

2.12 Theorem:

Let M be a coatomic le-module. Then the clique number and the chromatic number of G(M)
are cqual to |Max(M)).

PrOOF. Let S be a complete subgraph of G(M). For cach vertex n of S there exists a max-
imal clement m,, with n < m,. TFor distinct vertices n; and ns of S, since n; + ns = e,
we have my,, + mg,, = e and which implies m,, # my,,. Thus the subgraph induced by
T = {my|n is a vertex of S} is a complete graph and |S| < |T|. Now GM**(M) is a com-
plete subgraph and |S| < |GMe*(M)| for complete subgraph S. Hence the clique number of
G(M) = |Maz(M)| = |GMa=(M))

Now to find the chromatic number of G(M), let {m |\ € A} be the set of all maximal submod-
ule clements of M. For any A € A, let Gy(M) = {n € Sub(M)|0 # n < my,n & J,r_, G, (M)}
Then for A € A, my € GA(M) and G(M) # @. Also {Gx(M)|A € A} forms a partition for the
set of all vertices of G(M). Since for every A € A, any two vertices in Gy (M) are not adjacent,
all vertices in Gy (M) can have the same colour. However the m;s must have different colours.
Conscquently the chromatic number of G(M) = | A|. O

2.13 Definition:

Two vertices n and m are said to be orthogonal in G(M) if n+ m = e and for every k € G(M)
cithern+k#eorm+k#e.

2.14 Theorem:

If M is a coatomic le-module then the following statements are equivalent;

(1) G(M) has no triangle.
(2) Every two adjacent submodule elements are orthogonal.

(3) M has at most two maximal submodule elements.

ProoF. (1) = (2) Suppose n,m € G(M) withn+m =e. f m+k =ec¢,n+k = e for
some k € G(M) then n —m — k — n forms a triangle in G(M) and thercfore cither n 4+ k # e or
m+k#e.

(2) = (3) If [IMaxz(M)| = 3. Let my,mo,m3 € Max(M) be distint elements then it forms
triangle of maximal submodule clements my —ms — mg —m; and we get non-orthogonal adjacent
vertices {mq,ma}.

(3) = (1) If IMax(M)| =1 then we get empty graph. If [Maz(M)| = 2 = |G(M)| then our
graph is Ky. Now suppose |G(M)| = 3 and Max(M) = {m1, mz} then for n € Sub(M) we have
n < my or n < me. Thus any two submodule elements of M are < my or < ms. Without loss of
generality if n < my and k < my then n+ & < my # e. Therefore G(M) has no triangle. [

2.15 Corollary:
In a coatomic le-module the girth of G(M) is always 3 except when |Maz(M)| < 2.
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2.16 Definition:

Let M be an le-module such that Maz(M) # @ and let S = {n € G(M)|n £ Rad(M)}. The
subgraph gencrated by the set S is deonoted by G*(M).
Note that, if Rad(M) = 0 then G*(M) = G(M)

2.17 Theorem:
Let M be an le-module with Maxz(M) # @ . Then G*(M) is connected and diam(G*(M)) < 3.

PrROOF. Let my and ma be two distinet elements of G*(M). Then there exist ny, ne € Max(M)
such that my j{_ 11, Mo j{_ ng. If ny = ns then my +n1 = e = mo+ny and we have a path between
my and ms. If ny # ns then ny + ns = e and we again have a path between mq and mo. O

2.18 Theorem:

Let M be an le-module with |Max(M)| = oco. Then there exists n € G*(M) such that
|Maz(M)\v(n)| = oo, where v(n) = {m € Max(M)|n < m}.

PRrROOF. If possible, suppose that for every n € G*(M), |[Maxz(M)\v(n)| < co. Let my and my
be two distinct elements of G*(M). Then |Maz(M)\v(m1)| < oo and |Maxz(M)\v(ms)| < co and
implies |v(mq) Nv(ms2)| = co. Therefore there exists g € Sub(M) with my < ¢ and my < ¢. But
then my + ma < ¢+ g = q # e and which implies G*(M) is totally disconnected, a contradiction
to Theorem|[2.17]. O

2.19 Theorem:

Let M be a coatomic le-module. Then the following statements are equivalent.

(1) G*(M) is a complete bipartite graph.
(2) |Maz(M)| = 2.

PROOF. Suppose that G*(M) is a complete bipartite graph with two parts say V; and V.
If IMax(M)| = 1 then G*(M) cannot be bipartite. Therefore |[Max(M)| = 2. Suppose that
[Maz(M)| > 2 then by the pigeon-hole principle two of the maximal clements belong to one of
Vi, a contradiction to G*(M) is a complete bipartite graph.

Conversely, suppose that Maz(M) = {ny,n2}. Since M is coatomic, every submodule clement
of Mis<njor<mng Let Vi ={ne G (M)n<n}and Vo = {n e G(M)ln < n2}. If
n € Vi NVa then n < ny Any = Rad(M). But since n € G*(M), n £ Rad(M) . Thercfore
VinVe =@ and G*(M) = V1 U Vs, Let my € Vi and ms € Va then my + mao j_f ni, otherwise
ms < nq, which is not true. Similarly my + meo j_f ng. Consequently, my +mo = e and G*(M) is
a complete bipartite graph. [

2.20 Corollary:
Let M be a coatomic le-module with |[Maz(M)| > 1 then G*(M) is a star graph or girth of
G(M) < 4.

PROOF. Let M be a coatomic le-module with |[Maz(M)| = 2 then by Theorem|2.20], G* (M) is
a complete bipartite graph. Let Vi and Vi be two parts of the graph G*(M). If V4 or Vi contains
single clement then G*(M) is a star graph. Otherwise we have a eyele v —vo1 — v12 — v22 — v11
for v11,v12 € V1 and wvay,ves € Vo and hence the girth of G(M) is 4. If |[Max(M)| > 2 then by
Corollary[2.15], the girth of G(M) is 3. O

2.21 Theorem:
If M is a coatomic le-module and [Max(M)| = n < co,n > 1 then G*(M) is n—partite

PRrROOF. Suppose that Max(M) = my,ma,...,m,. Since M is coatomic, every submodule
clement is < m; for some i € {1,2,...,n}. Let W; = {n € G*(M)|n < m;} then take V; =
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Wi\ LJ;:ll Wi If mi,mip € Vi and my + mys = e then e = my + mio < my +my = my, a
contradiction. Also m; € V; implies V; # @ and M = Vi U Vo U ... UV,. Conscquently, G*(M)
is n—partite [

2.22  Theorem:
Let M be an le-module and G*(M) be a star graph. Then |[Maz(M)| = 2 and M is coatomic.

PRrROOF. Since G*(M) is a star graph implies |[Maxz(M)| < 3 and there exists a vertex n €
G*(M) such that n is adjacent to all other vertices. Then n € Maxz(M). For, if k € G(M) with
n<kthenn+ k< k+k=Fk+# e and it implies that n and k& are not adjacent and therefore
k ¢ G*(M), a contradiction to the fact that n € G*(M). Note that |Maz(M)| # 1, otherwise
Rad(M) = n and n ¢ G*(M). Now suppose that m € Maxz(M). If s £ n and s £ m for some
s € Sub(M) then s+n=e,s+m=ecthense G'(M)and s —n—m — s is a cycle in G* (M), a
contradiction. Hence M must be coatomic and |Max(M)| =2. 0O

2.23 Theorem:
If M is coatomic le-module then G*(M) is a star graph if and only if G*(M) is a tree graph.

ProOOF. If G*(M) is a star graph then clearly it is a tree graph. Conversely suppose that
G*(M) is a tree graph then |[Maxz(M)| < 3 because tree contains no cycle. If |[Maz(M)| = 1
then the graph of G*(M) is empty. If |[Max(M)| = 2 then by Theorem|2.19], G*(M) is a
complete bipartite graph. Therefore G*(M) is complete bipartite and tree. Hence G*(M) is a
star graph [

2.24 Example:

Let M = {0,a,b,¢,d, g, f,e} be an le-module over Zs with "+ as given in the table and usual
multiplication of ring Z, with elements of M ,i.c., 0z = 0 and 1z = x for all x € M and note that
Sub(M) ={0,a,b,¢,g,e}. Here G*(M) = G(M) as Rad(M) = 0 and G*(M) is a star graph and
hence complete bipartite graph as shown in the following Figure.

+|10|la|blc|d|g|f]e
0

Djlalblc|d|g|f]|e @ @
alalale|lc|e|lglele
b|lble|ble|lelel|le]|e ®,

clele|lelelelglele
dld|ele|le|lelele]le
gleglglelgleleglele
flflelele|lele|le]|e

& o & & & & & o o

G*(M) = G(M)

M

2.25 Theorem:
If M is a coatomic le-module and G*(M) contains a cycle then the core of G is a union of triangles

and rectangles, and every vertex of G*(M) is either an end vertex or a vertex of the core.

PROOF. Suppose (mq,ma,...,my,,m1) is a cycle. If n < 4 then the result holds trivially. If
n = 5 and my +ms = e or mg + Mmy,_1 = € or Mo + M, = ¢ then my — ma belongs to a triangle
or rectangle. Assume that my + mg # e, ma +m,,_1 # e and ms +m,, # e.
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Case 1) Suppose my + my,—1 # e. Then there exists m € Max(M) with mqy +m,—1 < m
and hence my + my,_1 + mo < m + ms and thercfore m + mo = e. Similary, m + m,, = e and
consequently (maq, ma, m, my,,my) is a rectangle.

Casce ii) Suppose my + my,—1 = e. Here we will use mathematical induction. If n = 5 then
(ma,ma, mg,ma,m) is a cycle. Assume the result for n = k. Then, (mq,ma, ..., mr_1,my) we
have my; — my belongs to a triangle or a rectangle. If (mq, mo, ..., my_y,my, my) is a cycle then
by assumption m, + my_; = e and which implies that (mqy,mso,...,my_1,m;) is a cycle and
therefore by the induction result follows.

Suppose that m is not a vertex of a cycle. We prove that only one edge is adjacent to m. If
possible, supposc mq,mse are two vertices adjacent to m then there exists a path m; —m —mso —¢
since G*(M) is connected. If ms = my + ¢ and mg = e, then (mq,m,ma2,e,mq) is a cycle
and therefore ms # e. But then ms +my = ms +mp +¢ = ¢+ my; = e and this implics
m+ms = m+m +c¢ = e+ e = e consequently (m,ma, ms,m) is a cycle, a contradiction.
Therefore m is an end vertex. [

2.26  Theorem:

[(Bhuniya and Kumbhakar, 2019)] Let p be a prime submodule clement of an le-module M and
x € M. Then (p: x) is a prime ideal of R for every z € M.

2.27 Theorem:

Let M be a coatomic le-module over a ring R. If for n,m € Max(M) with (m: e) € (n: e) then
G*(M) is complete if and only if G*(M) = K».

PrOOF. If [Max(M)| = 1 then G*(M) is an empty graph. Suppose |Maz(M)| > 2. Let
my,ma,my € Maz(M) be distinet elements. We prove that (my : e)mae € G*(M). If possible,
suppose (mq : e)ms < Rad(M) then (mq @ e)ms < ms. Let 1 € (my @ e) and r2 € (ma : €)
implies e < my and rae < mg. Therefore riree < ryma < mg implies rra € (mg @ e) and hence
(mq : e)(ms : e) C (mg : e). But my is a maximal clement and hence prime, by Theorem|2.26],
(mg : e) is a prime ideal. Therefore (my : e) C (mg @ e) or (m2 : e) C (mgz : ), a contradiction
to the assumption. Hence (my : e)ma £ ms and therefore we have (my : e)ms € G*(M). Note
that (mq : e)ma < mq implics (my @ e)ma +mq = mq # e. Hence d((my @ e)ma,mq) # 1. Now
(my : e)my+mg = e and therefore d((my = e)my, my) = 2, but diam(G*(M)) = 1 because G*(M)
is complete. Therefore |[Maz(M)| = 2. Then by Theorem(2.19], G*(M) is a complete bipartite
graph. Thus G*(M) = K3, because it is complete and complete bipartite graph.

O
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