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Abstract
We have designed and synthesized a novel acidic ionic liquid and explored its catalytic efficiency for the synthesis of 
1,2,4-triazolidine-3-thione derivatives. A simple reaction between aldehydes and thiosemicarbazide for short time in 60:40 
v/v water/ethanol at room temperature offers target 1,2,4-triazolidine-3-thione derivatives. The formation of target compounds 
is confirmed by NMR, IR and ESI–MS analysis. Pleasingly, synthesized compounds show noteworthy acetylcholinesterase 
(AChE) inhibitory activity with much lower IC50 values 0.0269 ± 0.0021–1.1725 ± 0.0112 μM than standard Neostigmine 
methylsulphate. In addition, synthesized 1,2,4-triazolidine-3-thiones exhibits significant free radical scavenging activity 
as compared to standard vitamin C. The studies on validation of Lipinski’s rule through chemoinformatics properties and 
molecular docking analysis are in support of in vitro analysis. Therefore, overall present study illustrates synthesis of some 
new 1,2,4-triazolidines-3-thiones which can serve as a template for drug designing such as AChE inhibitors.

Graphic abstract
Herein, we proposed ionic liquid-catalyzed ease of synthetic approach for medicinally important 1,2,4-triazolidine-3-thiones 
and their bio-evaluations.
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Introduction

Being eco-friendly catalyst, versatile reaction medium and 
safe solvent for the synthetic methodology enhance the util-
ity of ionic liquids (ILs) in organic chemistry. ILs shows 
unique properties such as low vapour pressure, high chemi-
cal, thermal as well as electrochemical stability, significant 
viscosity and low flammability. Such a characteristics of ILs, 
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increases their significance in industrial area for the devel-
opment of science and engineering field [1–4]. The distinct 
structure, unique physicochemical properties and ionic inter-
actions of ILs were widely explored in organic synthesis [5], 
catalysis [6], extraction [7] and CO2/SO2 capture [8, 9]. In 
addition, non-volatile and non-corrosive nature, air stability, 
simple recovery and recycling process have gained signifi-
cant research of interest in sulphate functionalized ILs and 
their application for synthetic organic procedures [10, 11].

Triazole derivatives are one of the important compounds 
in heterocyclic chemistry due to their extensive medicinal 
and pharmaceutical properties. Various reports are accessi-
ble for the synthesis of triazoles employing diverse synthetic 
approaches [12–14]. Triazoles were classified according to 
the position of nitrogen atoms in the ring viz. 1,2,3- and 
1,2,4-triazoles. Interestingly, out of these two different types 
of triazoles, 1,2,4-triazoles derivatives are investigated 
thoroughly in the field of pharmacology and agrochemi-
cal [15–23]. The biological activities posed by the class of 
1,2,4-triazoles or related compounds in this family mainly 
include studies on activities such as antibacterial [24, 25], 
analgesic [26], anti-cancer [27], anti-inflammatory [28], 
antifungal [29, 30] cytotoxic [31] antidepressant [32] and 
antitumor [33]. Remarkably, number of reports witnessed 
for biological effects of 1,2,4-triazolidine-3-thiones or their 
correlated compounds showed acetylcholinesterase inhibi-
tion [34–37], anti-cancer [38, 39], anti-HIV [40], antimyco-
bacterial [41], anti-viral [42], antiepileptic [43], anti-allergic 
[44], antidepressant [45], carbonic anhydrase [37], and anal-
gesic [46] activities. Due to their plant growth regulatory 
action, they have been used in the production of agrochemi-
cals [47]. Nowadays, design and synthesis of 1,2,4-triazoli-
dine-3-thiones for their biological activities is challenging, 
demanding and advantageous research interest before the sci-
entific community. Therefore, synthesis of 1,2,4-triazolidine-
3-thiones by using novel ionic liquid for their bio-evaluation 
against acetylcholinesterase inhibition activity was the main 
motivation to perform the present research work.

Literature survey guided us for the investigation towards 
finding out the attempts made by various research groups 
in designing and synthesizing 5-aryl-1,2,4-triazolidine-
3-thiones [48–50]. It was realized that use of hazardous 
chemicals, longer reaction time, unsatisfactory yield of 
final products, difficulties in product isolation and absence 
of studies on biological evaluation were the main draw-
backs in most of the reported studies. Therefore, our aim 
was to overcome these weaknesses through performing the 
ionic liquid-catalyzed reaction between variety of alde-
hydes and thiosemicarbazide in ethanol/water mixture as 
eco-friendly solvent at room temperature. The synthesized 
compounds were screened against acetylcholine-esterase 
(AChE) enzyme to examine biological activity. Delightfully, 
some of synthesized compounds found to be more potent 

against AChE enzyme as compared to standard Neostigmine 
methylsulphate.

Result and discussion

Synthesis of library of 1,2,4‑triazolidine‑3‑thiones

Initially, we focused our attention towards design and syn-
thesis of eco-friendly and homogenous Brønsted acidic ionic 
liquid (IL), 1,1′-(pentane-1,5-diyl)bis(2-aminopyridinium)-
di(hydrogen sulphate), i.e. C5H10[(2-APy)2(HSO4)2]. The 
synthesis was carried out in two steps. In the first step, two 
moles of 2-aminopyrimidine were reacted with one mole 
of 1,5 dibromopentane in DMF at 80 °C for 18 h to form 
1,1′-(pentane-1,5-diyl)bis(2-aminopyridinium)-dibromide, 
i.e. C5H10[(2-APy)2(Br)2]. In the second step, the resulting 
dibromide form of ionic liquid was further treated with an 
equimolar amount of sulphuric acid in methanol at room 
temperature for 4 h. The expected product was 1,1′-(pentane-
1,5-diyl)bis(2-aminopyridinium)-di(hydrogen sulphate), i.e. 
C5H10[(2-APy)2(HSO4)2]. The synthetic route for Brønsted 
acidic ionic liquid is shown in Scheme 1.

After successful synthesis of IL, the attention was focused 
towards optimize the reaction conditions for the synthesis 
of novel 1,2,4-triazolidine-3-thiones. Initially, the reaction 
of benzaldehyde (1 mmol) and thiosemicarbazide (1 mmol) 
was performed as a model reaction to optimize the reaction 
conditions in the proposed methodology. The screening and 
choice of catalyst was done by using various catalysts such as 
tripotassium phosphate (K3PO4), p-toluenesulphonic acid (p-
TSA), aluminium chloride (AlCl3), ceric ammonium nitrate 
(CAN), ammonium acetate (NH4OAc) and synthesized 
ionic liquid (IL)-C5H10[(2-APy)2(HSO4)2] (Table 1, Entries 
1–6). Pleasingly, it was noticed that synthesized ionic liquid 
showed excellent catalytic activity (Table 1, Entry 9). Fur-
thermore, attempts were made towards optimization of IL 
loading by changing its quantity (Table 1, Entries 6–13). It 
was found that 5 mol% of synthesized IL was enough to drive 
the reaction forward with excellent product yield in short 
reaction time (Table 1, Entry 9). When the catalytic amount 
of IL was chosen to below 5 mol%, then there was a slight 
decrease in the product yield and more time was taken to 
complete the transformation (Table 1, Entries 10–13). How-
ever, a slight increase in product yield was observed if there 
was increase in the amount of IL catalyst from 5–20 mol% 
with no change in reaction time for present transformation 
(Table 1, Entries 6–9). Hence, we concluded that 5 mol% of 
synthesized IL can be used as optimized catalytic amount to 
perform the present organic transformation. After successful 
screening of catalyst, the efforts were done towards optimiza-
tion of solvent system. As water is eco-friendly solvent and 
easily available resource, we performed the model reaction 
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using water as a solvent. Unfortunately, the less solubility 
of reactants in the water may be responsible for low product 
yield and longer reaction time (Table 2, entry 1). Hence, we 
decided to scrutinize the reaction using ethanol/water mix-
ture. Satisfyingly, we were found that water/ethanol (6:4 v:v) 
solvent mixture furnished exceptional product yield within 
very short reaction time and served as the best solvent for 
present transformation (Table 2, entry 5). Thus, 5 mol% of 
C5H10[(2-APy)2(HSO4)2] as catalytic amount, water/ethanol 
(6:4 v:v) as solvent system and room temperature are the 
optimized reaction conditions for the present transformation.

With these optimized reaction conditions in hand, we have 
generated a library of 1,2,4-triazolidine-3-thiones through 

reaction of thiosemicarbazide with various aromatic alde-
hydes bearing electron-donating as well as electron-withdraw-
ing groups (Table 3, entries 3a–3h) and polycyclic aromatic 
aldehydes (Table 3, entries 3i–3j) at room temperature. The 
synthetic route for 1,2,4-triazolidine-3-thiones is shown in 
Scheme 2. In addition to this, the scope of the reaction was 
extended using variety of heterocyclic aldehydes. All reactions 
were completed efficiently with satisfactory product yields in 
shorten reaction time (Table 3, entries 3k–3r). Encouraged 
by this success, flexibility of method was also scrutinized for 
various substituted salicylaldehydes. Pleasingly, all reactions 
were completed smoothly as per expectations (Table 3, entries 
3s–3ac). Therefore, the ease of present synthetic methodology 
can be adaptable for the swift and economical synthesis of 
1,2,4-triazolidine-3-thiones at room temperature.

Scheme 1   Synthetic route for 
Brønsted acidic ionic liquid

Table 1   Screening of catalyst and it’s amount for the synthesis of 
1,2,4-triazolidine-3-thione

Reaction condition: benzaldehyde (1  mmol), thiosemicarbazide 
(1 mmol), solvent-ethanol (10 mL), catalyst, room temperature
Bold indicates the most favorable conditions or suitable entries of 
compounds wherever necessary

S. no. Catalyst Loading 
(mol%)

Time (min) Yield (%)

1 K3PO4 20 10 82
2 p-TSA 20 25 78
3 AlCl3 20 35 79
4 CAN 20 40 77
5 NH4OAc 20 20 83
6 C5H10[(2-APy)2(HSO4)2] 20 3 88
7 C5H10[(2-APy)2(HSO4)2] 15 3 88
8 C5H10[(2-APy)2(HSO4)2] 10 3 87
9 C5H10[(2-APy)2(HSO4)2] 5 3 87
10 C5H10[(2-APy)2(HSO4)2] 4 5 85
11 C5H10[(2-APy)2(HSO4)2] 3 8 84
12 C5H10[(2-APy)2(HSO4)2] 2 10 84
13 C5H10[(2-APy)2(HSO4)2] 1 13 80

Table 2   Screening of solvent for the synthesis of 1,2,4-triazolidine-
3-thione

Reaction condition: benzaldehyde (1  mmol), thiosemicar-
bazide (1  mmol), specified solvent (10  mL), catalyst—C5H10[(2-
APy)2(HSO4)2] = 5 mol%, room temperature
Bold indicates the most favorable conditions or suitable entries of 
compounds wherever necessary

S. no. Solvent Time in min Yield (%)

1 Water 25 77
2 Water/ethanol (9:1) 12 79
3 Water/ethanol (8:2) 14 81
4 Water/ethanol (7:3) 9 68
5 Water/ethanol (6:4) 3 95
6 Water/ethanol (5:5) 6 92
7 Water/ethanol (4:6) 6 91
8 Water/ethanol (3:7) 10 90
9 Water/ethanol (2:8) 15 88
10 Water/ethanol (1:9) 12 87
11 Ethanol 10 87
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Table 3   C5H10[(2-
APy)2(HSO4)2] catalyzed 
synthesis of 1,2,4-triazolidine-
3-thione compounds library

Entry Aldehyde (1) Product (3) Time 

min

Yield 

%

M.P. obs. 

(Lit) ◦C

Refs.

3a 3 95 154

(154) [41]

3b 5 91 204

(202–204)

[14]

3c 10 96 227

(226–228)

[14]

3d 15 81 198

3e 3 88 237

3f 3 81 241

(240–241)

[13]

3g 3 79 178

3h 2 96 201

3i 2 97 216
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Table 3   (continued)

3j 3 97 255

3k 5 96 213

3l 10 86 209

3m 7 85 157

3n 3 88 210

3o 3 96 233

Entry Aldehyde (1) Product (3) Time 

min

Yield 

%

M.P. obs. 

(Lit) ◦C

Refs

3p 2 84 246

3q 2 97 254

3r 2 97 235

3s 3 95 245
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Table 3   (continued)

3t 10 92 218

(216–218)

[14]

3u 8 95 240

3v 6 96 246

3w 5 96 272

3x 6 93 228

3y 2 94 233

3z 2 93 250

3aa 2 95 247

3ab 2 96 256

3ac 2 95 230

Entry Aldehyde (1) Product (3) Time 

min

Yield 

%

M.P. obs. 

(Lit) °C

Refs

Reaction condition: aldehyde (1 mmol), thiosemicarbazide (1 mmol), Solvent = water/
ethanol (6:4, v/v) (10  mL), catalyst–C5H10[(2-APy)2(HSO4)2] = 5  mol%, room tem-
perature
Bold indicates the most favorable conditions or suitable entries of compounds wher-
ever necessary
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Reusability of synthesized IL‑C5H10[(2‑APy)2(HSO4)2]

The reusability of IL is a significant and fundamental 
characteristic property. Hence, attempts were made on the 
recovery and reuse of synthesized IL. The recovery and 
reusability of IL were performed with model reaction using 
C5H10[(2-APy)2(HSO4)2] (5 mol%) in water/ethanol (6:4 v:v, 
5 mL) at room temperature. After completion of reaction, 
the reaction mixture was simply filtered off to separate solid 
compound and water/ethanol mixture. The collected solvent 
was further extracted with ethyl acetate (10 mL) because the 
product was soluble in ethyl acetate and can be readily sepa-
rated by extraction from the aqueous catalytic system. While 
IL was soluble in water, it remains in the aqueous phase. The 
product dissolved in upper organic phase of ethyl acetate and 
IL dissolved in lower aqueous system were easily separated 
using simple liquid–liquid extraction. Thus, the residual IL 
contained aqueous phase was reused for the next run under 
the same reaction conditions. We were found that extracted 
IL can be reusable for 5 subsequent runs without the loss of 
catalytic activity and product yields which are graphically 
shown in Fig. 1. Thus, the use of this catalytic system and 
reaction conditions used in this studies follows the required 
trends and fundamental principles of green chemistry such 
as no side products, achievement of maximum final yield 
from reactants, utility of safe products, rule out the use of 

toxic solvents in huge quantity, use of mixed solvent system, 
reusable catalyst, reactions at ambient temperature and mini-
mization of harmful chemicals [51].

In vitro analysis

Acetylcholinesterase inhibition and structure–activity 
relationship

All the synthesized 1,2,4-triazolidine-3-thiones were tested 
against the acetylcholinesterase (AChE) inhibition activity. 
The compounds were shown varying degrees of inhibition 
activity against acetylcholinesterase enzyme. Table 4 illus-
trates IC50 values of 1,2,4-triazolidine-3-thione compounds 
for AChE inhibition. Significantly, some compounds exhib-
ited excellent activity with much lower IC50 values than 
the standard Neostigmine methylsulphate. In the present 
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Scheme 2   Synthesis of library for compounds of 1,2,4-triazolidine-3-thiones

Fig. 1   Recycling of catalyst—C5H10[(2-APy)2(HSO4)2] (5 mol%) for 
synthesis of 1,2,4-triazolidine-3-thiones

Table 4   IC50 values of 1,2,4-triazolidine-3-thione compounds for 
AChE inhibition

AChE acetylcholinesterase; values are expressed as mean ± SEM; 
SEM standard error of mean; N.A no activity; N.M Neostigmine 
methylsulphate

Compound AChE
IC50 (µM)

Compound AChE
IC50 (µM)

3a 86.6436 ± 0.4511 3p 13.4829 ± 0.9851
3b 26.4585 ± 0.2611 3q 17.3251 ± 0.4397
3c 18.7433 ± 0.5146 3r N.A
3d 37.9748 ± 0.9281 3s 3.3289 ± 1.2299
3e 61.6676 ± 1.1504 3t 0.7391 ± 0.0611
3f 104.0522 ± 1.3427 3u 0.5411 ± 0.0496
3g 12.8694 ± 0.9436 3v 0.6792 ± 0.0131
3h 22.4686 ± 0.1522 3w 0.4491 ± 0.0722
3i N.A 3x 0.7344 ± 0.0204
3j N.A 3y 0.8023 ± 0.0283
3k 6.7541 ± 0.1271 3z 0.2943 ± 0.0348
3l 38.8317 ± 0.4763 3aa 0.2179 ± 0.0229
3m 1.1725 ± 0.0112 3ab 0.0269 ± 0.0021
3n 199.9167 ± 3.8888 3ac 2.5858 ± 0.3121
3o 41.1167 ± 0.8964 N.M 2.0366 ± 0.0581
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investigations, compounds 3u, 3v, 3w, 3x, 3y, 3z, 3aa, 3ab 
and 3ac displayed much lower IC50 values than the standard 
Neostigmine methylsulphate which signifies their potency 
for acetylcholinesterase inhibition. The presence of differ-
ent substituents on the phenyl moiety of 1,2,4-triazolidine-
3-thiones might be the reason behind varying degrees in 
the IC50 values for all compounds within the range of 0.0
269 ± 0.0021–199.9167 ± 3.8888 µM as compared to the 
IC50 value 2.0366 ± 0.0581 µM of standard Neostigmine 
methylsulphate. From the screening results, it was found 
that 1,2,4-triazolidine-3-thione compounds bearing substi-
tuted aromatic aldehydes and heterocyclic aldehydes show 
higher IC50 values than the compounds possessing hydroxyl 
(–OH) and another alkyl or halogen group on phenyl moi-
ety. The electron-donating and electron-withdrawing groups 
present at different positions in all these structures play an 
important role in efficient interaction with the enzyme. 
For the instance, the compound 3s, 3t, 3x and 3y basi-
cally bearing the donating substituents on –OH containing 
phenyl side of 1,2,4-triazolidine-3-thione showed typical 
IC50 values from 3.3289 ± 1.2299 to 0.8023 ± 0.0283 µM 
as compared to that of standard drug used in this study 
(2.0366 ± 0.0581 µM). However, the compounds having 
–OH on phenyl side along with –nitro (NO2), bromine (Br) 
and chlorine (Cl) group were exhibited excellent and much 
lower IC50 values against AChE inhibition (compounds 3u, 
3v and 3w with IC50 = 0.5411 ± 0.0496, 0.6792 ± 0.0131 
and 0.4491 ± 0.0722  µM), while the compounds bear-
ing di-substituted withdrawing groups on –OH contain-
ing phenyl side showed further lower IC50 values (3z, 3aa 
and 3ab with IC50 = 0.2943 ± 0.0348, 0.2179 ± 0.0229 and 

0.0269 ± 0.0021 µM) than standard Neostigmine methyl-
sulphate (IC50 = 2.0366 ± 0.0581 µM) except compound 
3ac (IC50 = 2.5858 ± 0.3121 µM). Amongst the all synthe-
sized and screened compounds, 3ab found to be the most 
active compound against the acetylcholinesterase inhibi-
tion. Therefore, it seems that active site of 1,2,4-triazoli-
dine-3-thione compounds is phenyl moiety bearing elec-
tron-withdrawing groups on its structure, which possibly 
interacts more with the enzyme. However, the presence of 
highly withdrawing groups on the phenyl moiety of 1,2,4-tri-
azolidine-3-thione (compound 3ac) failed to produce much 
lower IC50 value is because of the bulky nature of -NO2 
groups interacting poorly with target enzyme. The previ-
ous research reports [34, 35] demonstrates that IC50 values 
against AChE inhibition were found to be 375 ± 27 µg/mL, 
507 ± 39 µg/mL, 16.42 µM, 0.9–19.5 µM and 87 nM using 
Hypsiboas cordobae extract [34], Pseudis minuta extract 
[34], phthalimides [52], isoindoline-1,3-diones [53] and 
2-(5-(2-fluorobenzylamino)-pentyl)isoindoline-1,3-dione 
[54], respectively. From significantly low and comparable 
IC50 values for some of synthesized 1,2,4-triazolidine-
3-thiones in present investigations than earlier reports show 
potency of these compounds against AChE inhibition. Fig-
ure 2 displays the general structural features with struc-
ture–activity relationship of 1,2,4-triazolidine-3-thiones.

Kinetic mechanism

The AChE inhibition kinetic study was performed to 
understand the presence of the kinetics mechanism behind 
the inhibitory action. Being the much lower IC50 value 

Fig. 2   General structural 
features with structure–activity 
relationship of 1,2,4-triazoli-
dine-3-thiones and IC50

Fig. 3   A Lineweaver–Burk plots 
for inhibition of acetylcholinest-
erase from human erythrocytes 
in the presence of inhibitor 
3ab and B Plot of inhibitor 
3ab concentration versus slope 
value; [3ab] = 0.00, 0.027 and 
0.054 µM, [Substrate acetylthi-
ocholine iodide] = 4, 2, 1, 0.5 
and 0.25 mM
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possessed by compound 3ab, it was chosen to investigate 
inhibition type and inhibition constant. The kinetic mecha-
nism study involves examination of Lineweaver–Burk plot 
of 1/V against 1/[S] given as Fig. 3A Where, V and [S] repre-
sents reaction velocity and substrate concentration. The plot 
gave straight lines for the compound 3ab and showed Vmax 
remains the same with a change in the slope values. While, 
Km increased with increasing concentration of 3ab. The 
experimental results interpret that compound 3ab inhibits 
the enzymes in competitive manner. The second plot given 
as Fig. 3B showed slope against concentration of 3ab. The 
dissociation constant for inhibitor denoted as Ki, which 
was estimated from the slope of the graph and found to be 
0.05 µM.

Free radical scavenging

All the synthesized 1,2,4-triazolidine-3-thiones were evalu-
ated for DPPH free radical scavenging activity using vita-
min C as control. All synthesized 1,2,4-triazolidine-3-thione 
compounds showed excellent free radical scavenging activ-
ity than standard vitamin C except 3a, 3b, 3c, 3d, 3l, 3o, 3p 
and 3r. These compounds did not show noteworthy activity 
even at its high concentration (100 µg/mL). The results are 
presented in Fig. 4.

In silico analysis

AChE structural assessment

The hydrolase protein which involves two chains (A,B) with 
comprises of 542 amino acids is the main core structure 
found in the human AChE protein. The presence of α-helices 
(33%), β-sheets (24%), coils (41%) and turns (21%) was ana-
lysed by using VADAR 1.8. The 93.50% of protein amino 
acids occurred in ideal region and 99% residues in permitted 
region concurred with analysis of Ramachandran plot. Most 
of the residues were existing in acceptable region with good 
precision of phi (φ) and psi (ψ) angles. The overall AChE 
protein structure and Ramachandran graph are given in sup-
porting information.

Chemoinformatics properties and Lipinski’s rule of five 
(RO5) validation

The chemoinformatics properties of all the synthesized com-
pounds (3a–3ac) were predicted by using computational 
tools. The synthesized compounds (3a–3ac) were validated 
through RO5 analysis. It is well known that in order to fol-
low the Lipinksi’s rule of five compounds must have molec-
ular mass and logP less than 500 g/mol and 5, respectively. 
Moreover, the compounds should possess no greater than 
10 HBA and 5 HBD. The exceed values of HBA and HBD 

Fig. 4   Free radical  % scavenging activity of synthetic compounds. (Values were represented as mean ± SEM (standard error of the mean). All 
compounds concentrations were 100 µg/mL
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results in poor permeation. Our results showed that all of 
synthesized compounds possess < 10 HBA and < 5 HBD 
values which are comparable with standard values. Polar 
surface area (PSA) is also considered as good descriptor 
for characterizing the drug absorption, intestinal absorption, 
bioavailability, cell permeation ability and blood–brain bar-
rier penetration. The predicted results showed that almost 
all of synthesized compounds possess less values of PSA 
than standard (89 Å2) except compound 3d and 3ac. Thus, 
predicted cheminformatics parameters for all compound 
and their AChE inhibition activity suggest the molecular 
flexibility of synthesized compounds viz. 3u,  3v,  3w,  3z,  
3aa and 3ab. The estimated chemoinformatics properties 
of synthesized 1,2,4-triazolidine-3-thiones (3a–3ac) listed 
in the tabular form and provided as supporting information.

Molecular docking analysis

Glide energy evaluation of  synthesized compounds  To 
understand the binding conformational performance of each 
ligand with the target protein, the well-known computa-
tional-based molecular docking analysis was performed [55, 
56]. To predict the conformational position of synthesized 
compounds, ligands 3a–3h, 3k–3q, 3s–3ac were docked 
against AChE separately. The predicted docked complexes 
were examined based on glide docking energy values (kcal/
mol) and binding interaction (hydrogen/hydrophobic) pat-
tern. The docking results showed that  3a–3h,  3k–3q,  
3s–3ac ligands were binds within the active region of tar-
get protein with different conformational poses (Fig.  5A). 
The glide docking energy values fluctuated from the highest 
energy value of − 9.22 kcal/mol to the lowest energy value 

of − 6.35 kcal/mol. Moreover, 3a–3h,  3k–3q,  3s–3ac com-
pounds exhibited good docking energy values as − 7.15, 
− 8.31, − 8.58, − 6.53, − 7.68, − 6.35, − 7.81, − 7.24, − 7.80, 
− 7.27, − 9.22, − 7.4, − 7.82, − 7.45, − 7.46, − 8.27, − 7.36, 
− 7.58, − 8.79, − 9.10, − 7.64, − 7.61, − 6.48, − 6.91, − 7.96 
and − 7.09  kcal/mol, respectively. The basic skeleton of 
ligands is similar in all synthesized compounds and there-
fore the docking energy values were fall within the same 
region of value for all docking complexes. Figure 5B illus-
trates graphical presentation of docking energy values for 
each synthesized ligand against target protein.

Ligand‑binding analysis of  AChE docked complexes  The 
in vitro study guided us to choose compound 3ab from the 
synthesized library of 1,2,4-triazolidine-3-thiones to ana-
lyse the detailed binding interaction with target protein. The 
structure–activity relationship (SAR) study showed that 
couple of π–π interactions were observed in 3ab docking 
complex. The phenyl ring structure is directly involved with 
Tyr337 and 1,2,4-triazolidine-3-thione ring having triazole 
moiety forms π–π interactions with Trp86. The Tyr337 
and Trp86 are aromatic amino acids of target AChE pro-
tein which are involved in the binding interactions with the 
compound 3ab. Figure 6 shows 3D (A) and 2D (B) binding 
interactions of 3ab against AChE protein.

Thus, in vitro analysis and SAR are in combination with 
the literature survey ensured the importance of these resi-
dues in bonding with other AChE inhibitors and supports 
our docking results [55, 57]. The docking complexes for 
remaining compounds (3a–3h, 3k–3q, 3s–3aa, 3ac) are 
mentioned in supporting data.

Fig. 5   Docking complexes of compounds 3a–3h, 3k–3q and 3s–3ac with target protein (A) and their docking energy values (B)



Molecular Diversity	

1 3

Conclusion

A novel ionic liquid C5H10[(2-APy)2(HSO4)2] was designed 
and synthesized from easily available precursors. The cata-
lytic efficiency of synthesized ionic liquid was explored for 
the synthesis of 1,2,4-triazolidine-3-thiones using various 
aldehydes and thiosemicarbazide in water/ethanol (6:4 v:v) 
mixed solvent system at room temperature. Employment of 
mild reaction conditions, reactions at ambient temperature, 
use of water/ethanol as a eco-friendly solvent system, opera-
tional simplicity, excellent practical yield of products, short 
reaction time, easy isolation of products through simple 
filtration and reusability of ionic liquid are the remarkable 
advantages of the present synthetic methodology. In addi-
tion, the advantage of proposed compounds includes active 
biological effect against AChE inhibition and serves as tem-
plate in drug design in medicinal field. The synthesized com-
pounds were shown varying degree of IC50 values within the 
range 0.0269 ± 0.0021–199.9167 ± 3.8888 µM as compared 
to standard Neostigmine methylsulphate. While, compounds 
bearing hydroxyl and di-substituted halogen groups in their 
structures are found to be more potent AChE inhibitor. The 
overall, in vitro and in silico analysis suggests that the com-
pound 3ab possessing IC50 = 0.0269 ± 0.0021 μM can be 
the effective and competent therapeutic agent for the AChE 
inhibition.

Experimental section

General

Various substituted aldehydes, salicylaldehydes (Alfa 
Aesar), thiosemicarbazide, p-Toluenesulphonic acid (p-
TSA) (spectrochem), 2-aminopyridine, sulphuric acid and 
1,5-dibromopentane (Sigma-Aldrich, Korea) were used as 

received without further purification. Tripotassium phos-
phate (K3PO4), aluminium chloride (AlCl3), ceric ammo-
nium nitrate (CAN) and ammonium acetate (NH4OAc) were 
purchased from Sigma-Aldrich, Korea. The melting point for 
each synthesized compound was recorded on Digimelt (SRS, 
USA) melting point apparatus. IR spectra were recorded on 
a Frontier IR Perkin–Elmer spectrophotometer. NMR spec-
tra were recorded on a Bruker AC-400 spectrometer using 
tetramethylsilane as an internal standard. The mass analy-
sis (LC–MS) was recorded using 2795/ZQ2000 (waters) 
spectrometer.

General procedure for multi‑component synthesis 
of IL

Synthesis of 1,1′‑(pentane‑1,5‑diyl)bis(2‑aminopyridinium)
‑di(bromide), i.e. C5H10[(2‑APy)2(Br)2]

In a 100-mL round bottom flask, 2-amino pyridine (5.0 g, 
53.11 mmol) was mixed with 1,5-dibromopentane (6.10 g, 
26.56 mmol) in DMF at 80 °C for 18 h. After the comple-
tion of reaction, the reaction mixture was cooled to room 
temperature and filtered. The obtained white crystals were 
then washed with DMF (10 mL), ethyl acetate (20 mL) and 
diethyl ether (20 mL) to remove traces of starting materi-
als. Further, it was dried under reduced pressure to afford 
83% yield of white crystals for 1,1′-(pentane-1,5-diyl)bis(2-
aminopyridinium)-di(bromide), i.e. C5H10[(2-APy)2(Br)2].

Synthesis of 1,1′‑(pentane‑1,5‑diyl)bis(2‑aminopyridinium)
‑di(hydrogen sulphate), i.e. C5H10[(2‑APy)2(HSO4)2]

To the 100 mL round bottom flask, dicationic 1,1′-(pen-
tane-1,5-diyl)bis(2-aminopyridinium)-di(bromide), i.e. 
C5H10[(2-APy)2(Br)2] (3.0 g, 7.17 mmol) was added along 
with methanol (20 mL). Then, an equivalent amount of 

Fig. 6   3D (A) and 2D (B) bind-
ing interaction of 3ab against 
AChE protein
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concentrated sulphuric acid (1.41 g, 14.35 mmol) was added 
in it with constant stirring. The mixture was then stirred at 
40 °C for 4 h at room temperature. On completion of reac-
tion, the solvent was evaporated on rotary evaporator and 
sequentially dried under reduced pressure to afford 95% of 
1,1′-(pentane-1,5-diyl)bis(2-aminopyridinium)-di(hydrogen 
sulphate), i.e. C5H10[(2-APy)2(HSO4)2].

Spectral characteristics of C5H10[(2‑APy)2(HSO4)2]

IR: 3331, 3022, 2949, 2836, 1668, 1590, 1529, 1395, 
1202, 1192, 1143, 1133, 1121, 1004, 903, 764, 682 cm−1; 
1H-NMR(400 MHz, CD3OD): δ 7.97 (d, 2H, J = 4 Hz), 
7.83–7.86 (m, 2H), 7.08 (d, 2H, J = 8 Hz), 6.90–6.93 (m, 
2H), 4.20 (t, 4H, J = 8 & 4 Hz), 3.30–3.31(m, 2H), 1.86–1.92 
(m, 6H), 1.50–1.57 (m, 2H) ppm; 13C-NMR(100 MHz, 
CD3OD): δ 154.05, 142.47, 139.67, 115.06, 113.42, 52.98, 
26.69, 22.37 ppm; MS (ESI): 258 (M+) m/z.

General procedure for multi‑component synthesis 
of 1,2,4‑triazolidine‑3‑thiones

The 50 ml round bottom flask was equipped with 1 mmol of 
corresponding aldehyde and 1 mmol of thiosemicarbazide in 
water/ethanol (6:4, v/v) (10 mL) as mixed solvent followed 
by addition of 5 mol% synthesized ionic liquid. The whole 
mixture was stirred at room temperature for the time men-
tioned in Table 3. The progress of the reaction was moni-
tored on TLC. After completion of reaction, the mixture 
was filtered to separate solid compound and reaction sol-
vent system. The filtered crude solid compound was poured 
in the ice water and simple filtration method was used to 
obtain solid compound. The purified form of synthesized 
compound was achieved by using recrystalization process 
in hot ethanol. Finally, the structures of all compounds were 
confirmed by IR, 1H and 13C NMR and mass analysis.

Spectral characteristics of newly synthesized 
1,2,4‑triazolidine‑3‑thiones

Table  3, entry 3d: 5‑(4‑aminophenyl)‑1,2,4‑triazoli‑
dine‑3‑thione  Brown powder; M.P.: 198 °C; IR: 3429, 3266, 
3154, 3022, 1590, 1539, 1386, 1286, 1202, 1192, 1134, 
1118, 967, 903, 819, 729, 682 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.51 (s, 1H, –NH), 11.22 (s, 1H, –NH), 
8.98 (s, 1H), 7.56–8.02 (m, 5H), 6.79 (s, 1H) ppm; 13C-
NMR(100  MHz, DMSO-d6): δ 177.98, 143.45, 129.33, 
120.11, 117.22 ppm; MS (ESI): 195 (M + 1) m/z. Elemental 
analysis calcd (%) for C8H10N4S: C 49.46; H 5.19; N 28.84; 
S 16.51; found: C 49.45; H 5.21; N 28.82; S 16.52.

Table  3, entry 3e: 5‑(4‑hydroxyphenyl)‑1,2,4‑triazoli‑
dine‑3‑thione  White powder; M.P.: 237 °C; IR: 3435, 3267, 

3152, 3022, 1588, 1537, 1512, 1284, 1203, 1192, 1134, 
1118, 903, 821, 692  cm−1; 1H-NMR(400  MHz, DMSO-
d6): δ 11.23 (s, 1H, –NH), 9.85 (s, 1H, –OH), 8.04 (s, 1H), 
7.93 (s, 1H), 7.81 (s, 1H), 7.59 (d, 2H), 6.75 (d, 2H) ppm; 
13C-NMR(100 MHz, DMSO-d6): δ 177.89, 159.61, 143.07, 
129.48, 125.54, 116.00 ppm; MS (ESI): 196 (M + 1) m/z. 
Elemental analysis calcd (%) for C8H9N3OS: C 49.21; H 
4.65; N 21.52; O 8.19; S 16.43; found: C 49.23; H 4.66; N 
21.50; O 8.19; S 16.42.

Table  3, entry 3f: 5‑(3,4‑dihydroxyphenyl)‑1,2,4‑triazoli‑
dine‑3‑thione  Pale Brown powder; M.P.: 241 °C; IR: 3436, 
3268, 3154, 3022, 1590, 1525, 1506, 1281, 1192, 1117, 967, 
903, 837, 803, 693 cm−1; 1H-NMR(400 MHz, DMSO-d6): 
δ 11.18 (s, 1H, –NH), 9.45 (s, 1H, –OH), 8.97 (s, 1H, –
OH), 8.02 (s, 1H), 7.86 (s, 1H), 7.70, (s, 1H), 6.98–7.00 (m, 
1H), 6.73 (d, 1H) ppm; 13C-NMR(100  MHz, DMSO-d6): 
δ 177.93, 148.45, 146.01, 143.94, 125.93, 120.70, 116.09, 
114.44 ppm; MS (ESI): 212 (M + 1) m/z. Elemental analy-
sis calcd (%) for C8H9N3O2S: C 45.49; H 4.29; N 19.89; O 
15.15; S 15.18; found: C 45.48; H 4.27; N 19.91; O 15.14; 
S 15.20.

Table 3, entry 3g: 5‑(4‑(diethylamino)phenyl)‑1,2,4‑triazoli‑
dine‑3‑thione  Yellow powder; M.P.: 178 °C; IR: 3437, 3268, 
3154, 3022, 1590, 1525, 1460, 1388, 1282, 1192, 1117, 967, 
903, 837, 819, 712, 693 cm−1; 1H-NMR(400 MHz, DMSO-
d6): δ 11.12 (s, 1H, –NH), 7.95 (s, 1H, –NH), 7.87 (s, 1H, 
–NH), 7.69 (s, 1H, –CH), 7.52 (d, 2H, ArH), 6.62 (d, 2H, 
Ar H), 3.33–3.37 (q, 4H, –NCH2), 1.08 (t, 6H, –CH3) ppm; 
13C-NMR(100 MHz, DMSO-d6): δ 177.34, 149.30, 144.10, 
129.23, 120.97, 111.56, 44.30, 13.03 ppm; MS (ESI): 251 
(M + 1) m/z. Elemental analysis calcd (%) for C12H18N4S: C 
57.57; H 7.25; N 22.38; S 12.80; found: C 57.56; H 7.26; N 
22.37; S 12.81.

Table  3, entry 3h: 5‑(4‑(dimethylamino)phenyl)‑1,2,4‑tria‑
zolidine‑3‑thione  White powder; M.P.: 201 °C; IR: 3435, 
3254, 3153, 3021, 1589, 1522, 1386, 1288, 1202, 1185, 
1117, 968, 814, 692 cm−1; 1H-NMR(400 MHz, DMSO-d6): 
δ 11.15 (s, 1H, –NH), 7.97 (s, 1H, –NH), 7.91 (s, 1H, –NH), 
7.73 (s, 1H, –CH), 7.55 (d, 2H, ArH), 6.68(d, 2H, Ar H), 
2.94 (s, 6H, –NCH3) ppm; 13C-NMR(100  MHz, DMSO-
d6): δ 177.59, 151.98, 143.92, 129.20, 122.01, 112.28, 
40.37 ppm; MS (ESI): 223 (M + 1) m/z. Elemental analy-
sis calcd (%) for C10H14N4S: C 54.03; H 6.35; N 25.20; S 
14.42; found: C 54.05; H 6.34; N 25.21; S 14.40.

Table  3, entry 3i: 5‑(anthracen‑9‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Yellow powder; M.P.: 216  °C; IR: 3422, 
3264, 3154, 3022, 1591, 1540, 1457, 1385, 1287, 1202, 
1192, 1118, 967, 903, 836, 729 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.63 (s, 1H, –NH), 9.31(s, 1H), 8.70 (s, 
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1H), 8.56 (s, 1H), 8.55 (s, 1H), 8.30 (s, 1H), 8.13 (d, 2H), 
7.70 (s, 1H), 7.54–7.64 (m, 4H) ppm; 13C-NMR(100 MHz, 
DMSO-d6): δ 178.60, 142.75, 131.46, 130.22, 130.04, 
129.55, 127.92, 126.18, 125.64, 125.37 ppm; MS (ESI): 280 
(M + 1), m/z. Elemental analysis calcd (%) for C16H13N3S: 
C 68.79; H 4.69; N 15.04; S 11.48; found: C 68.78; H 4.69; 
N 15.02; S 11.51.

Table  3, entry 3j: 5‑(pyren‑2‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Yellow powder; M.P.: 255  °C; IR: 3440, 
3273, 3157, 1604, 1592, 1543, 1461, 1383, 1291, 1186, 1117, 
926, 837, 753, 712 cm−1; 1H-NMR(400 MHz, DMSO-d6): δ 
11.54 (s, 1H, –NH), 9.25(s, 1H), 8.87 (d, 1H), 8.48 (d, 1H), 
8.08–8.35 (m, 10H) ppm; 13C-NMR(100 MHz, DMSO-d6): 
δ 178.38, 140.84, 132.34, 131.48, 130.61, 129.29, 128.83, 
128.06, 126.32, 124.82, 122.22 ppm; MS (ESI): 304 (M + 1) 
m/z. Elemental analysis calcd (%) for C18H13N3S: C 71.26; 
H 4.32; N 13.85; S 10.57; found: C 71.29; H 4.33; N 13.83; 
S 10.55.

Table  3, entry 3k: 5‑(2,2′‑bithiophen‑5‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Yellow powder; M.P.: 213  °C; IR: 3404, 
3157, 1603, 1586, 1521, 1501, 1456, 1376, 1348, 1304, 
1277, 1241, 1087, 1055, 921, 835, 799, 692  cm−1; 1H-
NMR(400  MHz, DMSO-d6): δ 11.48 (s, 1H, –NH), 8.20 
(s, 1H), 8.17 (s, 1H), 7.54–7.59(t, 2H), 7.37 (s, 2H), 7.28 
(d, 1H), 7.10 (t, 1H) ppm; 13C-NMR(100 MHz, DMSO-d6): 
δ 124.76, 125.32, 126.87, 132.28, 136.71, 137.66, 137.87, 
139.05, 177.91 ppm; MS (ESI): 268 (M + 1) m/z. Elemental 
analysis calcd (%) for C10H9N3S3: C 44.92; H 3.39; N 15.71; 
S 35.98; found: C 44.93; H 3.40; N 15.69; S 35.98.

Table  3, entry 3l: 5‑(2,3‑dihydrobenzo[b][1, 4]
dioxin‑6‑yl)‑1,2,4‑triazolidine‑3‑thione  White powder; 
M.P.: 209  °C; IR: 3410, 3268, 3159, 1606, 1587, 1523, 
1502, 1405, 1304, 1278, 1203, 1097, 921, 836, 799, 
693 cm−1; 1H-NMR(400 MHz, DMSO-d6): δ 11.28 (s, 1H, 
–NH), 8.07 (s, 1H), 7.94 (s, 1H), 7.89 (s, 1H), 7.39 (s, 1H), 
7.16–7.18 (d, 1H), 6.83–6.85 (d, 1H), 4.24 (s, 4H) ppm; 13C-
NMR(100 MHz, DMSO-d6): δ 64.42, 64.74, 115.68, 117.62, 
121.80, 128.07, 142.42, 144.11, 145.57, 178.12 ppm; MS 
(ESI): 238 (M + 1) m/z. Elemental analysis calcd (%) for 
C10H11N3O2S: C 50.62; H 4.67; N 17.71; O 13.49; S 13.51; 
found: C 50.60; H 4.68; N 17.70; O 13.48; S 13.54.

Table  3, entry 3m: 5‑(furan‑2‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Pale Brown powder; M.P.: 157 °C; IR: 3436, 
3285, 3166, 1600, 1524, 1486, 1362, 1286, 1192, 1104, 925, 
811, 695 cm−1; 1H-NMR(400 MHz, DMSO-d6): δ 11.43 (s, 
1H, –NH), 8.21 (s, 1H), 7.96 (s, 1H), 7.81(d, 1H), 7.63 (s, 
1H), 6.97 (d, 1H), 6.63 (t, 1H) ppm; 13C-NMR(100 MHz, 
DMSO-d6): δ 178.33, 149.87, 145.55, 132.95, 113.35, 
112.76 ppm; MS (ESI): 170 (M + 1) m/z. Elemental analysis 

calcd (%) for C6H7N3OS: C 42.59; H 4.17; N 24.83; O 9.46; 
S 18.95; found: C 42.58; H 4.15; N 24.85; O 9.45; S 18.97.

Table  3, entry 3n: 5‑(1H‑pyrrol‑2‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  White powder; M.P.: 210 °C; IR: 3438, 3270, 
3153, 1590, 1527, 1459, 1389, 1284, 1202, 1192, 1116, 
966, 903, 837, 817, 737, 694  cm−1; 1H-NMR(400  MHz, 
DMSO-d6): δ 11.33 (s, 1H, –NH), 11.24 (s, 1H, –NH), 8.05 
(s, 1H), 7.93 (s, 1H), 7.81(s, 1H), 6.95 (s, 1H), 6.37–6.38 
(m, 1H), 6.08 (t, 1H) ppm; 13C-NMR(100  MHz, DMSO-
d6): δ 177.79, 134.40, 127.97, 122.18, 113.54, 109.78 ppm; 
MS (ESI): 169 (M + 1) m/z. Elemental analysis calcd (%) 
for C6H8N4S: C 42.84; H 4.79; N 33.31; S 19.06; found: C 
42.83; H 4.80; N 33.29; S 19.08.

Table  3, entry 3o: 5‑(benzo[b]thiophen‑2‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Pale yellow powder; M.P.: 233 °C; IR: 3437, 
3266, 3152, 3022, 1590, 1538, 1460, 1388, 1285, 1192, 
1118, 967, 903, 820, 754, 682 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.61 (s, 1H, –NH), 8.34(s, 1H), 8.31 (s, 1H), 
7.92 (d, 1H), 7.35–7.83 (m, 5H) ppm; 13C-NMR(100 MHz, 
DMSO-d6): δ 178.39, 139.96, 139.65, 138.36, 128.37, 
126.49, 125.42, 124.88, 123.16 ppm; MS (ESI): 236 (M + 1) 
m/z. Elemental analysis calcd (%) for C10H9N3S2: C 51.04; 
H 3.85; N 17.86; S 27.25; found: C 51.05; H 3.84; N 17.83; 
S 27.28.

Table  3, entry 3p: 5‑(quinolin‑2‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Pale Yellow powder; M.P.: 246 °C; IR: 3437, 
3258, 3152, 3021, 1590, 1523, 1456, 1387, 1284, 1192, 
1117, 967, 903, 837, 814, 693 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.78 (s, 1H, –NH), 8.44 (d, 2H), 8.33 (t, 2H), 
8.00 (s, 1H), 7.97 (t, 2H), 7.73–7.77 (m, 1H), 7.58–7.61 
(t, 1H) ppm; 13C-NMR(100  MHz, DMSO-d6): δ 179.86, 
154.62, 147.92, 143.11, 136.88, 130.42, 129.26, 128.43, 
127.52, 118.88 ppm; MS (ESI): 230 (M +) m/z. Elemental 
analysis calcd (%) for C11H10N4S: C 57.37; H 4.38; N 24.33; 
S 13.92; found: C 57.39; H 4.37; N 24.33; S 13.91.

Table  3, entry 3q: 5‑(8‑hydroxyquinolin‑2‑yl)‑1,2,4‑triazo‑
lidine‑3‑thione  White powder; M.P.: 254  °C; IR: 3436, 
3266, 3153, 3021, 1590, 1535, 1505, 1463, 1323, 1281, 
1250, 1192, 1106, 919, 837, 815, 751, 720, 694 cm−1; 1H-
NMR(400 MHz, DMSO-d6): δ 11.83 (s, 1H, –NH), 9.83 (s, 
1H, –OH), 8.42(d, 2H, ArH), 8.30 (s, 1H, –NH), 8.26 (s, 1H, 
–NH), 8.24 (s, 1H, –CH), 7.37–7.43 (m, 2H, ArH), 7.07–
7.35(m, 1H, ArH) ppm; 13C-NMR(100  MHz, DMSO-d6): 
δ 179.04, 154.02, 152.38, 143.04, 138.74, 136.74, 129.38, 
128.80, 118.23, 112.43 ppm; MS (ESI): 247 (M + 1) m/z. 
Elemental analysis calcd (%) for C11H10N4OS: C 53.64; H 
4.09; N 22.75; O 6.50; S 13.02; found: C 53.66; H 4.10; N 
22.72; O 6.49; S 13.03.
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Table  3, entry 3r: 5‑(2‑chloroquinolin‑3‑yl)‑1,2,4‑triazoli‑
dine‑3‑thione  Yellow powder; M.P.: 235  °C; IR: 3436, 
3265, 3149, 1590, 1525, 1460, 1280, 1192, 1116, 903, 838, 
816, 760, 694  cm−1; 1H-NMR(400  MHz, DMSO-d6): δ 
11.79 (s, 1H, –NH), 9.31 (s, 1H, –NH), 8.49 (s, 1H, –NH), 
8.46 (s, 1H, –CH), 8.26 (s, 1H), 7.93–7.99 (m, 2H, ArH), 
7.81–7.85(m, 1H, ArH), 7.67–7.70 (m, 1H, ArH) ppm; 
13C-NMR(100 MHz, DMSO-d6): δ 178.99, 149.05, 147.55, 
137.34, 136.65, 132.18, 129.09, 128.52, 128.36, 127.62, 
126.73 ppm; MS (ESI): 265 (M + 1) m/z. Elemental analysis 
calcd (%) for C11H9ClN4S: C 49.91; H 3.43; Cl 13.39; N 
21.16; S 12.11; found: C 49.90; H 3.45; Cl 13.40; N 21.15; 
S 12.10.

Table  3, entry 3s: 5‑(2,4‑dihydroxyphenyl)‑1,2,4‑triazo‑
lidine‑3‑thione  White powder; M.P.: 245  °C; IR: 3434, 
3267, 3154, 3022, 1590, 1525, 1388, 1284, 1192, 1118, 
967, 903, 836, 820, 693 cm−1; 1H-NMR(400 MHz, DMSO-
d6): δ 11.16 (s, 1H, –NH), 9.73 (s, 2H, –OH), 8.22 (s, 
1H), 7.93 (s, 1H), 7.93, (s, 1H), 7.73 (s, 1H), 7.65 (d, 1H), 
6.22–6.28 (m, 2H) ppm; 13C-NMR(100 MHz, DMSO-d6): 
δ 177.59, 161.03, 158.78, 141.27, 129.04, 112.22, 108.49, 
102.74 ppm; MS (ESI): 212 (M + 1) m/z. Elemental analy-
sis calcd (%) for C8H9N3O2S: C 45.49; H 4.29; N 19.89; O 
15.15; S 15.18; found: C 45.51; H 4.28; N 19.91; O 15.13; 
S 15.17.

Table  3, entry 3u: 5‑(2‑hydroxy‑3‑nitrophenyl)‑1,2,4‑tri‑
azolidine‑3‑thione  Yellow powder; M.P.: 240  °C; IR: 
3437, 3264, 3151, 3021, 1591, 1525, 1461, 1365, 1230, 
1192, 1116, 925, 835, 820, 740, 712, 694  cm−1; 1H-
NMR(400 MHz, DMSO-d6): δ 11.58 (s, 1H, –NH), 10.73 
(s, 1H, –OH), 8.41(d, 2H, ArH), 8.24 (s, 1H, –NH), 8.11 (s, 
1H, –NH), 7.99–8.01 (m, 1H, ArH), 7.06 (t, 1H, ArH) ppm; 
13C-NMR(100 MHz, DMSO-d6): δ 178.99, 149.05, 147.55, 
137.34, 136.65, 132.18, 129.09, 128.52, 128.36, 127.62, 
126.73 ppm; MS (ESI): 241 (M + 1) m/z. Elemental analy-
sis calcd (%) for C8H8N4O3S: C 40.00; H 3.36; N 23.32; O 
19.98; S 13.34; found: C 40.02; H 3.37; N 23.30; O 19.96; 
S 13.35.

Table  3, entry 3v: 5‑(5‑bromo‑2‑hydroxyphenyl)‑1,2,4‑tria‑
zolidine‑3‑thione  White powder; M.P.: 246 °C; IR: 3436, 
3257, 3153, 3000, 1592, 1542, 1478, 1360, 1284, 1263, 
1192, 1117, 915, 835, 819, 693 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.40 (s, 1H, –NH), 10.20 (s, 1H, –OH), 
8.27 (s, 1H, –NH), 8.19 (s, 1H, –NH), 8.13–8.14 (d, 1H, 
ArH), 7.30–7.32 (t, 1H, ArH), 6.80 (d, 1H, ArH) ppm; 13C-
NMR(100  MHz, DMSO-d6): δ 178.64, 155.98, 137.91, 
134.03, 129.21, 123.52, 118.71, 111.59 ppm; MS (ESI): 276 
(M + 2) m/z. Elemental analysis calcd (%) for C8H8BrN3OS: 
C 35.05; H 2.94; Br 29.15; N 15.33; O 5.84; S 11.69; found: 
C 35.06; H 2.92; Br 29.14; N 15.34; O 5.86; S 11.68.

Table  3, entry 3w: 5‑(5‑chloro‑2‑hydroxyphenyl)‑1,2,4‑tria‑
zolidine‑3‑thione  White powder; M.P.: 272 °C; IR: 3437, 
3258, 3149, 3022, 1591, 1525, 1507, 1282, 1192, 1115, 924, 
837, 819, 750, 713, 694 cm−1; 1H-NMR(400 MHz, DMSO-
d6): δ 11.40 (s, 1H, –NH), 10.19 (s, 1H, –OH), 8.28 (s, 1H, –
NH), 8.13 (s, 2H, –NH&–CH), 8.07 (s, 1H, ArH), 7.18–7.20 
(m, 1H, ArH), 6.84 (d, 1H, ArH) ppm; 13C-NMR(100 MHz, 
DMSO-d6): δ 178.44, 155.72, 137.90, 130.70, 126.02, 
124.02, 122.94, 118.52  ppm; MS (ESI): 229 (M +) m/z. 
Elemental analysis calcd (%) for C8H8ClN3OS: C 41.83; H 
3.51; Cl 15.44; N 18.29; O 6.97; S 13.96; found: C 41.82; H 
3.50; Cl 15.46; N 18.28; O 6.99; S 13.95.

Table  3, entry 3x: 5‑(2‑hydroxy‑5‑methoxyphenyl)‑1,2,4
‑triazolidine‑3‑thione  Pale yellow powder; M.P.: 228  °C; 
IR: 3429, 3266, 3154, 3022, 1590, 1539, 1486, 1458, 1386, 
1363, 1286, 1202, 1192, 1142, 1134, 1118, 967, 913, 903, 
836, 819, 783, 753, 729, 692, 682 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.88 (s, 1H, –NH), 11.47 (s, 1H, –OH), 9.97 
(s, 1H, –NH), 8.52 (s, 1H, –CH), 7.94–7.92 (d, 1H, ArH), 
7.49–7.30 (m, 2H, ArH), 6.33 (s, 1H, –NH), 3.81 (s, 3H, 
–OCH3) ppm; 13C-NMR(100 MHz, DMSO-d6): δ 160.27, 
137.54, 130.32, 129.25, 124.11, 120.18, 115.80, 107.81, 
103.45 ppm; MS (ESI): 226 (M + 1) m/z. Elemental analysis 
calcd (%) for C9H11N3O2S: C 47.99; H 4.92; N 18.65; O 
14.21; S 14.23; found: C 47.98; H 4.93; N 18.67; O 14.20; 
S 14.22.

Table  3, entry 3y: 5‑(4‑(diethylamino)‑2‑hydroxyphenyl)
‑1,2,4‑triazolidine‑3‑thione  Pale Yellow powder; M.P.: 
233  °C; IR: 3438, 3258, 3153, 3021, 1591, 1524, 1507, 
1360, 1281, 1181, 1115, 925, 839, 819, 713, 694 cm−1; 1H-
NMR(400 MHz, DMSO-d6): δ 11.50 (s, 1H, –NH), 9.47 (s, 
1H, –OH), 8.16 (s, 1H, –NH), 7.86 (s, 1H, –NH), 7.64 (s, 
1H, –CH), 7.49 (d, 1H, ArH), 6.17–6.19 (m, 1H, ArH), 6.06 
(d, 1H, ArH), 3.27–3.31 (q, 4H, –NCH2), 1.07 (t, 6H, –CH3) 
ppm; 13C-NMR(100  MHz, DMSO-d6): δ 176.97, 158.72, 
150.53, 142.84, 129.35, 108.02, 104.53, 97.90, 44.21, 
13.15 ppm; MS (ESI): 267 (M + 1) m/z. Elemental analysis 
calcd (%) for C12H18N4OS: C 54.11; H 6.81; N 21.03; O 
6.01; S 12.04; found: C 54.10; H 6.82; N 21.01; O 6.02; S 
12.05.

Table 3, entry 3z: 5‑(2‑hydroxy‑3,5‑diiodophenyl)‑1,2,4‑tria‑
zolidine‑3‑thione  White powder; M.P.: 250 °C; IR: 3435, 
3255, 3153, 3022, 1591, 1537, 1507, 1357, 1282, 1114, 925, 
831, 819, 750 cm−1; 1H-NMR(400 MHz, DMSO-d6): δ 11.58 
(s, 1H, –NH), 9.93 (s, 1H, –OH), 8.21 (s, 2H, –ArH), 8.18 
(s, 1H, –NH), 8.06 (s, 1H, –NH), 7.99 (s, 1H, –CH) ppm; 
13C-NMR(100 MHz, DMSO-d6): δ 176.49, 146.84, 137.73, 
137.07, 114.87, 105.96, 81.61, 60.88 ppm; MS (ESI): 447 
(M +) m/z. Elemental analysis calcd (%) for C8H7I2N3OS: 
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C 21.49; H 1.58; I 56.78; N 9.40; O 3.58; S 7.17; found:: C 
21.51; H 1.57; I 56.75; N 9.38; O 3.60; S 7.19.

Table  3, entry 3aa: 5‑(3,5‑dibromo‑2‑hydroxyphenyl)‑1,2,
4‑triazolidine‑3‑thione  White powder; M.P.: 247  °C; IR: 
3439, 3358, 3260, 3151, 2999, 1590, 1534, 1450, 1359, 1281, 
1116, 922, 837, 815, 713, 691 cm−1; 1H-NMR(400 MHz, 
DMSO-d6): δ 11.51 (s, 1H, –NH), 9.96 (s, 1H, –OH), 8.27 
(s, 1H, –NH), 8.22 (s, 2H, –ArH), 8.13 (s, 1H, –NH), 7.73 (s, 
1H, –CH) ppm; 13C-NMR(100 MHz, DMSO-d6): δ178.80, 
152.48, 138.77, 135.62, 129.53, 113.55, 112.92 ppm; MS 
(ESI): 355 (M + 2), 353 (M+) m/z. Elemental analysis calcd 
(%) for C8H7Br2N3OS: C 27.22; H 2.00; Br 45.27; N 11.90; 
O 4.53; S 9.08; found: C 27.23; H 2.01; Br 45.26; N 11.88; 
O 4.54; S 9.08.

Table  3, entry 3ab: 5‑(3,5‑dichloro‑2‑hydroxyphenyl)‑1,2,
4‑triazolidine‑3‑thione  White powder; M.P.: 256  °C; IR: 
3461, 3347, 3148, 2990, 1612, 1595, 1527, 1451, 1358, 
1283, 1218, 1144, 927, 860, 817, 752, 732, 682 cm−1; 1H-
NMR(400  MHz, DMSO-d6): δ 10.63 (s, 1H, –NH), 8.42 
(s, 1H, –OH), 7.70 (s, 1H, –NH), 7.47 (s, 2H, –ArH), 7.46 
(s, 2H, –NH & –CH) ppm; 13C-NMR(100  MHz, DMSO-
d6): δ 179.52, 151.15, 140.97, 130.27, 127.14, 124.68, MS 
(ESI): 265(M + 1) m/z. Elemental analysis calcd (%) for 
C8H7Cl2N3OS: C 36.38; H 2.67; Cl 26.84; N 15.91; O 6.06; 
S 12.14; found: C 36.40; H 2.66; Cl 26.82; N 15.93; O 6.06; 
S 12.13.

Table  3, entry 3ac: 5‑(2‑hydroxy‑3,5‑dinitrophenyl)‑1,2,4
‑triazolidine‑3‑thione  Red–Orange powder; M.P.: 230 °C; 
IR: 3465, 3356, 3154, 3009, 1611, 1592, 1531, 1454, 1357, 
1285, 1202, 1192, 1133, 1117, 904, 840, 818, 735, 714 cm−1; 
1H-NMR(400 MHz, DMSO-d6): δ 10.80 (s, 1H, –NH), 9.09 
(s, 2H, –NH), 8.92 (s, 1H, –OH), 8.92 (s, 1H, –CH), 8.62 (s, 
2H, –ArH) ppm; 13C-NMR(100 MHz, DMSO-d6): δ 180.08, 
156.46, 140.05, 134.84, 126.57, 121.34 ppm; MS (ESI): 286 
(M + 1) m/z. Elemental analysis calcd (%) for C8H7N5O5S: 
C 33.69; H 2.47; N 24.55; O 28.05; S 11.24; found: C 33.70; 
H 2.45; N 24.54; O 28.04; S 11.27.

In vitro methodology

Acetylcholinesterase inhibition assay

The inhibitory activity of 1,2,4-triazolidine-3-thiones was 
determined spectrophotometrically using reported meth-
ods with some modifications and acetylthiocholine iodide 
as substrate [58, 59]. Briefly, the assay solution consists 
of increasing concentrations of test inhibitor compounds 
(10 µL) with the composition of 180 µL of 50 mM Tris 
HCl buffer having pH 7.7 and 20 µL of enzyme AChE, EC 
3.1.1.7. Further, the prepared solutions were pre-incubated 

for 30 min at 4 °C followed by addition of 0.3 mM 20 µL of 
5,5′-dithiobis-(2-nitrobenzoic acid) and 1.8 mM of 20 µL 
acetylthiocholine iodide which were incubated at 37 °C for 
the time of 10 min. The assays were executed with blank 
solution holding each compound without acetylcholinest-
erase for the investigation of non-enzymatic reaction. The 
absorbance of each solution thus measured and recorded at 
412 nm within the wavelength ranging from 340 to 850 nm 
using a microplate reader (OPTI Max, Tunable). The reac-
tion rates were compared and the per cent inhibition was 
calculated using Eq. 1. Neostigmine methylsulphate was 
used as standard reference inhibitor.

Here, the B and S are the absorbance for the blank and 
sample under studies, respectively. The three independent 
experiments were executed and IC50 values were calculated 
by nonlinear regression using GraphPad Prism 5.0.

Kinetic analysis

A series of experiments were performed to determine the 
inhibition kinetics of 3ab by following the already reported 
method [60]. Kinetics were carried out by varying the con-
centration of acetylthiocholine iodide against various con-
centrations of inhibitor 3ab (0.00, 0.027 and 0.054 µM). 
The procedure involves the change in concentration of 
acetylthiocholine iodide (4, 2, 1, 0.5 and 0.25 mM) for the 
investigation of kinetics effect and remaining procedure was 
same for all kinetic studies as described in protocol used for 
acetylcholine-esterase inhibition assay. The linear portion of 
absorbances thus measured was used to evaluate the maxi-
mum initial velocities up to 5 min with addition of enzyme 
in the interval of each 30 s. The Lineweaver–Burk plot was 
used to determine the enzyme inhibition type for the present 
bio-evaluation. Further, the inhibitor dissociation constant 
(Ki) was also determined.

Free radical scavenging assay

2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay was used to 
determine the radical scavenging activity [61, 62]. In this 
assay, solution consists of 100 µL of DPPH (150 µM) and 
20 µL of increasing concentration of tested compounds with 
final volume of 200 µL in each well using methanol. The 
assay solutions were allowed to incubate for 30 min at ambi-
ent temperature. The reference inhibitor used for this study 
was Vitamin C. The microplate reader was used to measure 
the absorbance of each assay at 517 nm (OPTI Max, Tunable). 
The reaction rates were compared and the per cent inhibition 
for tested inhibitors was calculated. Thus, whole experiment 
was carried out three times to check the output consistency.

(1)Inhibition (%) =
(B − S)

B
× 100
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Computational methodology

Retrieval of human acetylcholinesterase in protein 
preparation wizard

The human acetylcholinesterase (AChE) structure was 
obtained from Protein Data Bank (PDB) (http://www.rcsb.
org/struc​ture/4EY7) with PDBID 4EY7 [63]. The Maestro 
interface was used for the adjustment in pre-process and 
minimization of AChE protein structure.

Designing of ligands in ACD/ChemSketch

The ACD/ChemSketch was used to sketch the synthesized 
ligands (3a–ac) and further retrieved in mol format. The 
chemoinformatics properties and validation of Lipinski’s 
rule for all synthesized compounds (3a–ac) were examined 
using online computational tools namely Molinspiration and 
Molsoft, respectively.

Grid generation and molecular docking

The protein preparation wizard workflow in Schrödinger 
Suite Release 2019-1 was used for the preparation of opti-
mized AChE structure and which was further used in molec-
ular docking studies. The active site of the enzyme was 
defined from the co-crystallized ligands from Protein Data 
Bank and literature survey [55, 56]. Moreover, synthesized 
ligands (3a–3h, 3k–3q, 3s–3ac) sketched using 2D sketcher 
in Maestro was examined for the docking studies against 
target protein drawn by using Glide docking protocol [64]. 
The predicted binding energies (docking scores) and confor-
mational positions of ligands within active region of protein 
were also performed using Glide experiment. Throughout 
the docking simulations, both partial flexibility and full flex-
ibility around the active site residues were performed by 
Glide/SP/XP and induced fit docking (IFD) approaches [65].
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