Course Structure for S.Y.B.SC. (Computer science) (2024 Pattern)

Sem	Course Type	Course Code	Course Name	Theory / Practical	Credits
IV	Minor(Theory)	COS-256-MN(A)	Continuous Probability Distributions and Testing of Hypothesis	Theory	02
	Minor(practical)	COS-257-MN(A)	Minor Statistics Practical (CS) -II	Practical	02

CBCS Syllabus as per NEP 2.0 for T.Y.B.Sc. Computer Science (2023 Pattern)

Name of the Programme : B.Sc.(Computer Science)

Programme Code : USCOS

Class : S.Y.B.Sc. (Computer Science)

Semester : IV

Course Type : Minor (Theory)
Course Code : COS-256-MN(A)

Course Title : Continuous Probability Distributions and

Testing of Hypothesis

No. of Credits : 02

No. of Teaching Hours : 30

Course Objectives:

By the end of this course, students will be able to:

- 1. Understand the theoretical concepts of standard continuous probability distributions and their applications in real life.
- **2.** Learn the properties of Uniform, Exponential, and Normal distributions and apply them to solve problems.
- 3. Acquire knowledge of the fundamental concepts of statistical hypothesis testing.
- **4.** Develop the ability to formulate null and alternative hypotheses and understand p-values and confidence intervals.
- **5.** Apply large sample tests (Z-tests) for population means and proportions with real-life data.
- **6.** Gain proficiency in small sample tests (Chi-square, t-tests, and F-tests) and their applications.
- 7. Develop problem-solving and analytical skills for interpreting data using statistical inference techniques.

Course Outcomes:

By the end of the course, students will be able to:

- CO1 Explain and derive the properties (mean, variance, shape) of Uniform, Exponential, and Normal distributions
- CO2 Use Normal distribution and central limit theorem for approximating binomial and Poisson probabilities.
- CO3 Apply the concept of hypothesis testing for real-world problems by defining null and alternative hypothesis.
- **CO4** Perform Z-tests for population means and proportions and construct confidence intervals for large samples
- CO5 Apply Chi-square tests for independence, goodness of fit, and

variance tests.

CO6 Conduct t-tests (one sample, two sample, and paired) and compute confidence intervals for small samples.

Apply F-tests for comparing population variances and interpret statistical results in the context of practical applications

Topics and Learning Points

UNIT 1: Standard Continuous Probability Distributions

(10L)

- **1.1** Uniform Distribution: statement of p.d.f., mean, variance, nature of probability curve. Theorem (without proof): The distribution function of any continuous r.v. if it is Invertible follows U (0, 1) distribution
- **1.2** Exponential Distribution: statement of p.d.f. of the form $f(x) = \frac{1}{\theta} e^{-x/\theta}$, mean, Variance, nature of probability curve, lack of memory property. (Without proof)
- **1.3** Normal Distribution: statement of p.d.f., identification of parameters, nature of Probability density curve, standard normal distribution, symmetry, distribution of aX+b, aX+bY+c where X and Y are independent normal variables, computations of Probabilities using normal probability table, normal approximation to binomial and Poisson distribution, central limit theorem (statement only)
- **1.4** Numerical problems related to real life applications.

Unit 2: Introduction to Testing of Hypothesis

(4L)

Parameter, random sample from a distribution as i.i.d. r.v.s. $X_1, X_2... X_n$, statistic, estimator, estimate, critical region. Statistical hypothesis, null and alternative hypothesis, one sided and two sided alternative hypothesis, p-value, Confidence interval, Procedure of testing of hypothesis.

Unit 3: Large Sample Tests (Tests based on Normal distribution) (7L)

- **3.1** Z-tests for population means:
 - **3.1.1** One sample and two sample tests for one-sided and two-sided alternatives
 - **3.1.2** Confidence Interval for Population Mean: $100(1-\alpha)$ % two sided confidence interval for single population mean (μ) and difference of population means of two independent normal populations.
- **3.2** Z-tests for population proportions:
 - **3.2.1** One sample and two sample tests for one-sided and two-sided alternatives

3.2.2 Confidence Interval for Population Proportion: $100(1-\alpha)$ % two sided confidence interval for single population proportion (P) and difference of population proportions of two independent normal populations.

Unit 4: Small Sample Tests (Tests based on Normal distribution): (9L)

- **4.1** Tests based on Chi-square distribution:
 - **4.1.1** Test for independence of two attributes
 - **4.1.2** Test for Goodness of Fit (Without rounding off the expected frequencies) (Problems are not expected)
 - **4.1.3** Test for H_0 : $\sigma^2 = \sigma_0^2$ against one-sided and two-sided alternatives when mean is known, mean is unknown.
- **4.2** Tests based on t-distribution:
 - **4.2.1** t-tests for population means: One sample and two sample tests for one-sided and two-sided alternatives.
 - **4.2.2** Confidence Interval for Population Mean: $100(1-\alpha)$ % two sided confidence interval for single population mean (μ) and difference of population means of two independent normal populations.
- **4.3** Paired t-test for one-sided and two-sided alternatives(.
- **4.4** Test based on F-distribution:
 - **4.4.1** Test for H₀: $\sigma_1^2 = \sigma_2^2$ against one-sided and two-sided alternatives when means are known and means are unknown.

References:

- 1. A First course in Probability, Sheldon Ross. Pearson Education Inc.
- 2. Statistical Methods (An Introductory Text), Medhi J. 1992, New Age International.
- 3. Modern Elementary Statistics, Freund J.E. 2005, Pearson Publication.
- **4.** Probability, Statistics, Design of Experiments and Queuing Theory with Applications of Computer Science, Trivedi K.S. 2001, Prentice Hall of India, New Delhi.
- **5.** Gupta S. C. and Kapoor V. K.1987 Fundamentals of Mathematical Statistics (3rd Edition) S.Chand and Sons, New Delhi
- **6.** Common Statistical Tests Kulkarni M.B., Ghatpande, S.B., Gore S.D. 1999 Satyajeet Prakashan,
- **7.** Sinha S. K.: Reliability and Life Testing, Second Edition, Wiley Eastern Publishers, New Delhi.

- **8.** Hogg R. V. and Craig R. G.: Introduction to Mathematical Statistics Ed.4.
- **9.** Gupta and Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi.
- **10.** Meyer P.L. (1970): Introductory Probability and Statistical Applications, Edition Wesley.
- **11.** Freedman D., PisaniR., Purves R. (2007), Statistics, Fourth Edition, W. W. Nortan and Company, New York

Programme Outcomes and Course Outcomes Mapping:

CO-PO Mapping Table:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13
CO1	3	2	1	2	2	1	1	2	1	1	1	2	1
CO2	3	2	1	2	3	1	2	2	2	1	1	2	1
CO3	2	3	1	2	3	2	2	2	2	1	1	2	1
CO4	2	3	1	3	3	2	2	2	2	1	1	2	1
CO5	2	3	1	3	3	2	2	2	2	1	1	2	1
CO6	2	3	1	3	3	2	2	2	2	1	1	2	1
CO7	2	3	1	3	3	2	2	2	2	1	1	2	1

This mapping table and the justifications show how each Course Outcome (CO) aligns with the Program Outcomes (POs) and the extent of their relationship.

Justification for Mapping PO and CO:

PO1: Comprehensive Knowledge and Understanding

- **CO1:**(2) The ability to define and calculate p.d.f., mean, and variance requires a solid understanding of foundational statistical concepts.
- CO2: (2) Applying the Exponential and Uniform distributions builds on a foundational understanding of probability theory and distribution properties.
- CO3: (2). Understanding the normal distribution and its applications is a core component of statistical theory
- CO4: (2) Using Chi-square, t, and F-distributions requires comprehensive knowledge of statistical methods.
- **CO5:** (2) Hypothesis testing is rooted in deep theoretical knowledge of statistics.
- CO6: (2) Analyzing data using parametric and non-parametric methods
- **CO7:** (2) involves a strong grasp of statistical principles. Applying large sample tests and F-tests also requires a solid understanding of underlying statistical theories.

PO2: Practical, Professional, and Procedural Knowledge

• **CO1:** (1) Defining and calculating p.d.f., mean, and variance are fundamental skills that have practical applications in various fields.

- **CO2:** (3) Applying distributions like Exponential and Uniform in real-life scenarios demonstrates practical professional knowledge.
- **CO3:** (3). The normal distribution is widely used in professional statistical analysis, making this CO strongly related to practical knowledge
- **CO4:** (3) The application of Chi-square, t, and F-distributions is a key practical skill in statistical testing.
- **CO5:** (3) Performing hypothesis tests is a critical professional procedure in data analysis and research
- **CO6:** (3). The use of testing methods is essential for practical data analysis in many industries
- **CO7:** (3) Applying large sample tests and F-tests has direct professional and procedural applications in statistical analysis.

PO3: Entrepreneurial Mindset and Knowledge

- **CO1:** (1) Understanding basic statistical measures can support data-driven decision-making in entrepreneurial contexts.
- CO2: (2). Solving real-life problems using distributions can aid in risk assessment and market analysis
- CO3: (1) Knowledge of the normal distribution can support quality control and operational decisions
- **CO4:** (1) Using statistical distributions in decision-making processes can enhance an entrepreneurial approach.
- **CO5:** (1) Hypothesis testing can support innovation by validating business strategies and processes
- **CO6:** (2). Analyzing data effectively is crucial for identifying market trends and opportunities
- **CO7:** (2) Applying large sample tests can assist in making informed business decisions and understanding market dynamics

PO4: Specialized Skills and Competencies

- **CO1:** (1) Calculating statistical measures develops technical and analytical skills.
- **CO2:** (2). Applying distributions to solve problems enhances problem-solving and analytical competencies.
- **CO3:** (1) Mastery of the normal distribution demonstrates specialized statistical skills
- **CO4:** (1) Proficiency in using Chi-square, t, and F-distributions is essential for specialized statistical analysis.
- **CO5:** (1) Hypothesis testing requires a high level of analytical reasoning and specialized skills.

- **CO6:** (2). The ability to analyze data using various methods is a key technical competency.
- **CO7:** (2) Conducting large sample tests and F-tests reflects advanced problem-solving skills.

PO5: Capacity for Application, Problem-Solving, and Analytical Reasoning

- **CO1:** (2) Calculating p.d.f., mean, and variance involves applying mathematical concepts to solve problems.
- CO2: (3). Applying distributions directly correlates with solving real-world problems
- CO3: (3) The normal distribution is fundamental to many analytical processes
- **CO4:** (3) Interpreting statistical distributions requires strong analytical reasoning.
- CO5: (3) Hypothesis testing is central to solving data-related problems
- **CO6:** (3). Analyzing data using statistical methods exemplifies the application of analytical reasoning.
- **CO7:** (3) Applying large sample tests and F-tests involves problem-solving at an advanced level

PO6: Communication Skills and Collaboration

- **CO1:** (1) Explaining statistical concepts and results improves communication skills.
- **CO2:** (1). Solving real-life problems can require collaboration with others to interpret results.
- **CO3:** (1) Knowledge of the normal distribution helps in communicating statistical findings.
- **CO4:** (1) Effective interpretation of statistical tests requires clear communication.
- **CO5:** (1) Hypothesis testing often involves collaboration in research or business environments.
- **CO6:** (1). Analysing data and reporting findings requires strong communication skills
- **CO7:** (1) Large sample tests and F-tests may require collaboration to interpret and report results

PO7: Research-related Skills

- **CO1:** (2) Calculating p.d.f., mean, and variance is foundational for statistical research.
- **CO2:** (2). Applying distributions in research settings demonstrates the ability to conduct data-driven inquiries.
- CO3: (2) Understanding the normal distribution is crucial for many research methodologies

- CO4: (2) Interpreting statistical distributions is a key research skill
- **CO5:** (2) Hypothesis testing is fundamental to research design and analysis.
- CO6: (2). Analyzing data using statistical methods is central to conducting research
- **CO7:** (2) Applying large sample tests and F-tests supports research-related data analysis.

PO8: Learning How to Learn Skills

- **CO1:** (1) Learning to calculate statistical measures fosters self-directed learning.
- CO2: (1) Applying distributions in new contexts encourages continuous learning.
- CO3: (1) Mastering the normal distribution involves learning new statistical techniques.
- CO4: (1) Interpreting and using statistical tests requires ongoing learning
- **CO5:** (1) Hypothesis testing involves adapting to new information and techniques.
- **CO6:** (1). Analyzing data using various methods supports the development of self-learning skills
- **CO7:** (1) Applying large sample tests and F-tests requires continuous adaptation and learning.

PO9: Digital and Technological Skills

- **CO1:** (1) Calculating statistical measures can involve the use of software tools
- CO2: (2). Applying distributions often requires technological tools for data analysis
- CO3: (2) The normal distribution is frequently analyzed using digital tools.
- **CO4:** (2) Statistical tests are commonly conducted using software.
- CO5: (2) Hypothesis testing is often performed with the help of technological tools.
- **CO6:** (2). Analyzing data using parametric and non-parametric methods requires digital proficiency.
- **CO7:** (2) Conducting large sample tests and F-tests involves using statistical software.

PO10: Multicultural Competence, Inclusive Spirit, and Empathy

- **CO1:** (1) Understanding statistical concepts can enhance communication across diverse settings.
- **CO2:** (1). Applying statistical methods can aid in addressing issues in multicultural contexts.

- CO3: (1) Knowledge of statistics can support decision-making in diverse environments.
- **CO4:** (1) Interpreting statistical results can foster understanding in multicultural settings.
- **CO5:** (1) Hypothesis testing can be applied to studies involving diverse populations.
- **CO6:** (1). Analyzing data can help address issues related to inclusivity and diversity.
- **CO7:** (1) Large sample tests and F-tests can be used to study diverse populations and

PO11: Value Inculcation and Environmental Awareness

- **CO1:** (1) Statistical knowledge can be applied to study environmental data...
- **CO2:** (1). Applying distributions can support sustainability studies.
- CO3: (1) Understanding the normal distribution can aid in environmental data analysis
- **CO4:** (1) Using statistical tests can help in environmental research..
- **CO5:** (1) Hypothesis testing can be applied to environmental studies...
- **CO6:** (1). Analyzing data can support environmental conservation efforts.
- **CO7:** (1) Large sample tests and F-tests can be used in environmental research.

PO12: Autonomy, Responsibility, and Accountability

- **CO1:** (1) Calculating statistical measures fosters independent problem-solving.
- **CO2:** (2). Applying distributions to solve problems requires accountability and responsibility in data analysis
- CO3: (2) Understanding and applying the normal distribution requires independent analysis.
- CO4: (2) Using statistical tests involves responsibility in interpreting results.
- CO5: (2) Hypothesis testing requires careful and accountable analysis.
- **CO6:** (2). Analyzing data using statistical methods demonstrates autonomy in research.
- **CO7:** (2) Applying large sample tests and F-tests requires responsibility and accountability in data interpretation.

PO13: Community Engagement and Service

- **CO1:** (1) Understanding statistics can support community-based research and services
- CO2: (1). Applying statistical methods can address community issues.
- CO3: (1) Interpreting data can inform community decisions and services.
- **CO4:** (1) Statistical knowledge can be used to benefit community projects.
- **CO5:** (1) Hypothesis testing can support community research initiatives.
- **CO6:** (1). Analyzing data can help address issues related to inclusivity and diversity.
- CO7: (1) Large sample tests and F-tests can used for comparison in two localities

CBCS Syllabus as per NEP 2020 for S.Y.B.Sc. (Computer Science) (2024 Pattern)

Name of the Programme : B.Sc. Computer Science.

Programme Code : USCOS

Class : S.Y.B.Sc. (Computer Science)

Semester : IV

Course Type : Minor (Practical)
Course Code : COS-257-MN(A)

Course Title : Minor Statistics Practical (CS) -II

No. of Credits : 02 No. of Teaching Hours : 60

Course Objectives:

The main objectives of this practical course are:

- 1. To develop understanding of continuous probability distributions and their applications.
- 2. To provide hands-on practice in fitting statistical distributions to real and simulated data.
- 3. To enable students to perform statistical inference using large and small sample tests.
- 4. To familiarize students with model sampling methods from different probability distributions.
- 5. To train students in the use of modern statistical software (R) for analysis.
- 6. To encourage interpretation of results for solving real-life case studies.
- 7. To inculcate analytical thinking and problem-solving skills in the context of statistics.

Course Outcomes:

After completing the practical course, students will be able to:

- **CO1** Fit uniform and normal distributions and compute expected frequencies.
- **CO2** Apply normal and exponential distributions in solving applied problems.
- **CO3** Perform model sampling from uniform and normal distributions.
- **CO4** Demonstrate understanding of the nature and properties of continuous distributions.
- **CO5** Compute probabilities using continuous probability distributions.
- **CO6** Conduct large and small sample hypothesis tests, including Chi-square based tests.
- **CO7** Apply statistical methods and software tools to analyze real-life case studies.

Topics and Learning Points:

Sr. No.	Title of the Experiments						
1	Fitting of Exponential distribution.						
2	Fitting of normal distribution and computation of expected frequencies.						
3	Applications of uniform, exponential and normal distributions.						
4	Computations of probabilities of continuous probability distributions.						
5	Model sampling from normal distribution.						
6	Nature of probability distribution. (Continuous distributions).						
7	Test for means based on normal distribution.						
8	Test for proportions based on normal distribution.						
9	Test based on t distributions and F distribution.						
10	Test based on chi-square distribution (Independence of Attribute and Goodness						
	of fit test) (Also using R Software)						
11	Case study(Equivalent to 4 practicals)						

Note:

- 1. Every practical is equivalent to four hours per batch per week
- 2. Practical batch should be of 12 students
- 3. Students must complete all the practical to the satisfaction of the teacher concerned.
- 4. Students must produce at the time of practical examination, the laboratory journal along with the completion certificate signed by the Head of the Department.

Reference:

- 1. Fundamentals of Mathematical Statistics S.C. Gupta and V.K. Kapoor
- **2.** Probability and Statistics with R Maria Dolores Ugarte, Ana F. Militino, Alan T. Arnholt
- **3.** Introduction to the Practice of Statistics David S. Moore, George P. McCabe, Bruce A. Craig
- 4. Statistical Methods S.P. Gupta
- **5.** Applied Statistics and Probability for Engineers Douglas C. Montgomery and George C. Runger
- **6.** Introduction to Probability and Statistics William Mendenhall, Robert J. Beaver, Barbara M. Beaver

Justification for CO-PO Mapping

PO1 Comprehensive Knowledge and Understanding

• CO1 to CO7 Involve strong application and understanding of statistical theory, including distributions, hypothesis testing, and probability.

Statistical concepts are foundational to the discipline.

PO2 Practical, Professional, and Procedural Knowledge

• CO1 to CO7 Involves hands-on statistical analysis, sampling, hypothesis testing, and software use (e.g., R). Students apply theoretical concepts in practical lab settings.

PO3 Entrepreneurial Mindset and Knowledge

• CO1 to CO7 Indirectly related through case studies and real-life application where decision-making is required. Encourages data-driven thinking, though not a central focus

PO4 Specialized Skills and Competencies

• **CO1 to CO7** Focus on analytical reasoning, problem-solving, and interpreting data. Required in all COs, especially CO3, CO5, CO6.

PO5 Application, Problem-Solving, and Analytical Reasoning

• **CO1 to CO7** Statistical methods are inherently problem-solving tools. Core to experiments like hypothesis testing and probability applications.

PO6 Communication Skills and Collaboration

• CO1 to CO7 While communication is not the core, students do interpret results and present findings. Presenting case studies and test results requires basic reporting..

PO7 Research-related Skills

• CO6 and CO7 Directly align with statistical testing, data collection, and analysis. Lays the foundation for quantitative research methods.

PO8 Learning How to Learn

• **CO1 to CO7** Encourages independent problem-solving, especially through software and case studies. Self-learning required to work with tools and interpret results.

PO9 Digital and Technological Skills

• CO1 to CO7 Use of R software and other tools for statistical analysis is core to this practical. Students gain hands-on experience with data analysis software

PO10 Multicultural Competence and Empathy

• **CO1 to CO7** Indirectly touched upon through team-based labs or diverse data sets. Not central, but has some relevance in collaborative settings

PO11 Value Inculcation and Environmental Awareness

• CO1 to CO7 Only indirectly addressed through ethical data analysis and responsible reporting. Minimal relevance, but students learn to handle data ethically

PO12 Autonomy, Responsibility, and Accountability

- CO1 to CO7 Practical tasks require independent execution, analysis, and submission. Students must carry out analysis and document results responsibly
- CO7 (Case May involve community-related data analysis. Real-world application of study) statistics to societal issues.