

**Anekant Education Society's** 

# **TuljaramChaturchand College, Baramati**

(Autonomous)

Three Year B.Sc. Degree Program in Computer Science (Faculty of Science & Technology)

CBCS Syllabus (2019 Pattern) S.Y. B.Sc.(Computer Science) Sem- III For Department of Computer Science Tuljaram Chaturchand College of Arts, Science & Commerce, Baramati

| Class: F.Y.B.Sc. (Computer Science) |                            |           |                              |  |  |  |  |
|-------------------------------------|----------------------------|-----------|------------------------------|--|--|--|--|
| Semester I Semester II              |                            |           |                              |  |  |  |  |
| CSCO 1101                           | Basic Programming using C  | CSCO 1201 | Advanced Programming using C |  |  |  |  |
| CSCO1102                            | DBMS-I                     | CSCO 1202 | DBMS-II                      |  |  |  |  |
| CSCO1103                            | Lab Course I : Basics of C | CSCO 1203 | Lab Course I : Advanced C    |  |  |  |  |
| CSCO1104                            | Lab Course II : DBMS I     | CSCO1204  | Lab Course II : DBMS II      |  |  |  |  |
|                                     | Physical Education         |           |                              |  |  |  |  |

| Class :S.Y.B.Sc. (Computer Science)                                     |                                            |                                            |                                   |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|--|--|--|
|                                                                         | Semester III                               | Semester IV                                |                                   |  |  |  |
| CSCO 2301                                                               | Data Structures using C                    | CSCO2401 Object Oriented Concepts using    |                                   |  |  |  |
| CSCO2302                                                                | Introduction to Web Technology             | b Technology CSCO2402 Software Engineering |                                   |  |  |  |
| CSCO2303                                                                | Lab Course I : Based On                    | On CSCO2403 Lab Course I: Based On 2401    |                                   |  |  |  |
|                                                                         | CSCO2301                                   |                                            |                                   |  |  |  |
| CSCO2304                                                                | Lab Course II: based On                    | CSCO2404                                   | Lab Course II : Based On CSCO2402 |  |  |  |
|                                                                         | CSCO2302                                   |                                            | with Mini Project                 |  |  |  |
|                                                                         | Certificate Course I Certificate Course II |                                            |                                   |  |  |  |
| Environment Science (EVS)<br>An Educational Trip conduct in IV semester |                                            |                                            |                                   |  |  |  |

|                                               | Class: T.Y.B.Sc. (Computer Science)     |                                                       |                                                                |  |  |  |  |
|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
|                                               | Semester V                              | Semester VI                                           |                                                                |  |  |  |  |
| CSCO3501                                      | System Programming &Operating System    | CSCO3601                                              | Advanced Operating System                                      |  |  |  |  |
| CSCO 3502                                     | Theoretical Computer Science            | CSCO3602                                              | Compiler Construction                                          |  |  |  |  |
| CSCO3503                                      | Computer Networks - I                   | CSCO3603                                              | Computer Networks - II                                         |  |  |  |  |
| CSCO3504                                      | Web Development – I                     | CSCO3604                                              | Web Development–II                                             |  |  |  |  |
| CSCO3505                                      | Advanced Programming in Java            | ava CSCO3605 Advanced Java Technologies<br>Frameworks |                                                                |  |  |  |  |
| CSCO3506                                      | Object Oriented Software<br>Engineering | CSCO3606                                              | Software Metrics & Project<br>Management                       |  |  |  |  |
| CSCO3507                                      | Lab Course I: Based on<br>CSCO3501      | CSCO3607                                              | Lab Course I: Based on CSCO3601                                |  |  |  |  |
| CSCO3508                                      | Lab Course II: Based on<br>CSCO3505     | CSCO3608                                              | Lab Course II: Based on CSCO3605<br>& Mini Project using JAVA  |  |  |  |  |
| CSCO3509 Lab Course III: Based on<br>CSCO3504 |                                         | CSCO3609                                              | Lab Course III: Based on CSCO3604<br>& Mini Project using PHP. |  |  |  |  |
| Certificate Course III                        |                                         | An Educational Trip conduct in this semester.         |                                                                |  |  |  |  |

# **S.Y.B.Sc.(Computer Science)**

# **Semester-III**

# **Credit Structure & Syllabus**

(Academic Year 2020-2021, Autonomous)

| Sem | Paper Code | Title of Paper                             | No. of<br>Credits | Exam | Marks   |
|-----|------------|--------------------------------------------|-------------------|------|---------|
|     | CSCO2301   | Data Structure Using C                     | 3                 | I/E  | 60 + 40 |
|     | CSCO2302   | Introduction to Web Technology             | 3                 | I/E  | 60 + 40 |
| III | CSCO2303   | Lab Course – I based On Data structure     | 2                 | I/E  | 60 + 40 |
|     | CSCO2304   | Lab Course – II Based on Web<br>Technology | Grade             | I/E  | 60 + 40 |
|     |            | Certificate Course I                       | 2                 |      |         |
|     | CSCO 2401  | Object Oriented Concepts using Java        | 3                 | I/E  | 60 + 40 |
| IV  | CSCO2402   | Software Engineering                       | 3                 | I/E  | 60 + 40 |
|     | CSCO2403   | Lab Course – I on CSCO2401                 | 2                 | I/E  | 60 + 40 |
|     | CSCO2404   | Lab Course-II CSCO2402 with S.E.           | Grade             | I/E  | 60 + 40 |
|     |            | Project.                                   |                   |      |         |
|     |            | Certificate Course II                      | 2                 |      |         |
|     |            | Environment Science                        | 2                 |      |         |

# SYLLABUS (CBCS) FOR S. Y. B. Sc. (Computer Science) (w.e.f from June, 2020) Academic Year 2020-2021 Class: S.Y. B. Sc.(Computer Science) (Semester-III)

**Subject:** Computer Science **Title of Paper:** Data Structure Using C **Credit:** 3(4 Lectures/Week)

Paper Code: CSCO2301 **Paper:** I No. of lectures: 48

#### **Prerequisites**:

- Basic knowledge of algorithms and problem solving. •
- Knowledge of C Programming Language. •

#### **Objective:**

- 1. To learn the systematic way of solving problem
- 2. To understand the different methods of organizing large amount of data
- 3. To efficiently implement the different data structures
- 4. To efficiently implement solutions for specific problems
- Learning Outcomes: CO1.Use well-organized data structures in solving various problems.
- CO2. Differentiate the usage of various structures in problem solution.
- CO3. Understand discrete structures such as sets, relations, and lattices.
- CO4. Study the basic operations of Propositional logic and Boolean Algebra.
- CO5. Analyse and study various proof techniques.
- CO6. Understand basics of Graph theory and how it can be used to visualize and simplify problems.
- CO7. To efficiently implement the different data structure

| 1. Introduction to data structures [                                                         | 2] |
|----------------------------------------------------------------------------------------------|----|
| 1.1 Concept                                                                                  |    |
| 1.2 Data type, Data object, ADT                                                              |    |
| 1.2.1 Data Type                                                                              |    |
| 1.2.2 Data Object                                                                            |    |
| 1.2.3 ADT -Definition, Operation, examples on rational number                                |    |
| 1.3 Need of Data Structure                                                                   |    |
| 1.4 Types of Data Structure                                                                  |    |
| 2. Algorithm analysis [                                                                      | 3] |
| 2.1 Algorithm – definition, characteristics                                                  |    |
| 2.2 Space complexity, time complexity                                                        |    |
| 2.3 Asymptotic notation (Big O, Omega $\Omega$ , Theta Notation $\Theta$ )                   |    |
| 3. Linear data structures [                                                                  | 6] |
| 3.1 Introduction to Arrays - array representation                                            |    |
| 3.2 Sorting algorithms with efficiency - Bubble sort, Insertion sort, Merge sort, Quick Sort |    |
| 3.3 Searching techniques – Linear Search, Binary search                                      |    |
| 4. Linked List [                                                                             | 8] |
| 4.1 Introduction to Linked List                                                              |    |
| 4.2 Implementation of Linked List – Static & Dynamic representation,                         |    |
| 4.3 Types of Linked List                                                                     |    |
| 4.4 Operations on Linked List - create, display, insert, delete, reverse, search, sort,      |    |
| concatenate &merge                                                                           |    |
| 4.5 Applications of Linked List – polynomial manipulation                                    |    |

4.6 Generalized linked list – Concept and Representation

#### 5. Stacks

5.1 Introduction

[6]

- - -

5.2 Representation- Static & Dynamic

|       | 5.3 Operations – Create, Init, Push, Pop& Display                                                                                                                           |      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | 5.4 Application - infix to postfix, infix to prefix, Evaluation of Expression                                                                                               |      |
|       | 5.5 Simulating recursion using stack                                                                                                                                        |      |
| 6. Qu | ieues                                                                                                                                                                       | [4]  |
|       | 6.1 Introduction                                                                                                                                                            |      |
|       | 6.2 Representation - Static & Dynamic                                                                                                                                       |      |
|       | 6.3 Operations – Create, Init, Insert, Remove & Display                                                                                                                     |      |
|       | 6.4 Circular queue, priority queue (with implementation)                                                                                                                    |      |
|       | 6.5 Concept of doubly ended queue (Dequeue)                                                                                                                                 |      |
| 7. Tr | ees                                                                                                                                                                         | [12] |
|       | 7.1 Concept & Terminologies                                                                                                                                                 |      |
|       | 7.2 Binary tree, binary search tree                                                                                                                                         |      |
|       | 7.3 Representation – Static and Dynamic                                                                                                                                     |      |
|       | 7.4 Operations on BST & Heap Tree – create, Insert, delete, traversals (preorder, inorder postorder), counting leaf, non-leaf & total nodes ,nonrecursive inorder traversal | ,    |
|       | 7.5 Application - Heap sort                                                                                                                                                 |      |
|       | 7.6 Height balanced tree- AVL trees- Rotations, AVL tree examples.                                                                                                          |      |
| 8. Gr | aph                                                                                                                                                                         | [7]  |
|       | 8.1 Concept & terminologies                                                                                                                                                 |      |
|       | 8.2 Graph Representation – Adjacency matrix, adjacency list, inverse Adjacency list, adjacency multi list, orthogonal list                                                  |      |
|       | 8.3 Traversals – BFS and DFS                                                                                                                                                |      |
|       | 8.4 Spanning Tree                                                                                                                                                           |      |
|       | 8.5 Applications – AOV network – topological sort, AOE network – critical path                                                                                              |      |
| Refe  | rences:                                                                                                                                                                     |      |
|       | 1. Fundamentals of Data Structures By Horowitz Sahani (Galgotia)                                                                                                            |      |
|       | 2. Data Structures using C and C++ By YedidyahLangsam, Aaron M. Tenenbaum,                                                                                                  |      |
|       |                                                                                                                                                                             |      |

Moshe J. Augenstein

- 3. Introduction to Data Structures using C---By Ashok Kamthane
- 4. Data Structures using C --- Bandopadhyay&Dey (Pearson)
- 5. Data Structures using C --- By Srivastav

| Course   | Progra | Programme Outcomes (POs) |     |     |     |     |     |  |
|----------|--------|--------------------------|-----|-----|-----|-----|-----|--|
| Outcomes | PO1    | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7 |  |
| CO1      | 3      | 3                        | 3   | 3   | 2   | 3   | 2   |  |
| CO2      | 3      | 3                        | 3   | 3   | 2   | 3   | 2   |  |
| CO3      | 2      | 3                        | 3   | 2   | 2   | 3   | 2   |  |
| CO4      | 1      | 3                        | 3   | 2   | 1   | 2   | 1   |  |
| CO5      | 2      | 2                        | 3   | 1   | 1   | 2   | 1   |  |
| CO6      | 3      | 3                        | 3   | 3   | 2   | 3   | 2   |  |
| CO7      | 3      | 3                        | 3   | 3   | 2   | 3   | 2   |  |

#### Mapping of PO1 With All CO's with Justification :

CO1. With PO1: Applying well-organized data structures is a fundamental principle of computer science that directly contributes to solving a wide range of applications.

CO2. With PO1: The ability to differentiate and select appropriate data structures is crucial in applying fundamental principles to solve diverse problems in computer science applications.

CO3. With PO1: Understanding discrete structures is fundamental to applying computer science principles in various applications.

CO4. With PO1: Studying logic and Boolean Algebra is essential for applying fundamental principles in various computational applications.

CO5. With PO1: While proof techniques contribute to applying fundamental principles, their direct application may vary in different applications.

CO6. With PO1: Understanding graph theory contributes directly to visualizing and simplifying problems in various applications of computer science.

CO7. With PO1: Efficient implementation of data structures is crucial in applying fundamental principles to a wide range of practical applications in computer science.

# Mapping of PO2 With All CO's with Justification :

CO1. With PO2: Well-organized data structures are integral to designing and correctly implementing solutions to significant computational problems.

CO2. With PO2: The ability to differentiate and select appropriate data structures is crucial in designing and implementing effective solutions to computational problems.

CO3. With PO2: Understanding discrete structures is essential for designing and implementing solutions to significant computational problems.

CO4. With PO2: While logic and Boolean Algebra contribute to problem-solving, their direct impact on the design and implementation of solutions may vary.

CO5. With PO2: Proof techniques may be less directly tied to the practical aspects of designing and implementing solutions to computational problems.

CO6. With PO2: Graph theory directly contributes to visualizing and simplifying problems, enhancing the design and implementation of computational solutions.

CO7. With PO2: Efficient implementation of data structures is crucial in the design and correct implementation of solutions to significant computational problems.

## Mapping of PO3 With All CO's with Justification:

CO1: With PO3: Understanding and using data structures is fundamental to the discipline, and it forms the basis for solving a variety of problems.

CO2: With PO3: Differentiating between various data structures is crucial in selecting the most appropriate one for solving specific problems, reflecting a deep understanding of the discipline.

CO3: With PO3: Discrete structures are foundational concepts in the discipline, and understanding them is essential for a solid grasp of the basics.

CO4: With PO3: Propositional logic and Boolean Algebra are fundamental to computer science, and studying them contributes significantly to understanding the basics of the discipline.

CO5: With PO3: Proof techniques are fundamental to understanding the theoretical aspects of computer science, aligning closely with the goal of imparting a basic understanding of the discipline.

CO6: With PO3: Graph theory is a fundamental part of computer science, and understanding its basics contributes to visualizing and simplifying a wide range of problems.

CO7: With PO3: Efficient implementation of data structures is a practical application of the basics of the discipline, demonstrating a strong connection between understanding and application.

# Mapping of PO4 With All CO's with Justification:

CO1. With PO4: Proficiency in utilizing well-organized data structures is crucial for ongoing professional development in the field of computer science.

CO2. With PO4: The ability to differentiate and select appropriate data structures is a skill that contributes significantly to professional development in solving diverse and complex problems.

CO3. With PO4: Understanding discrete structures is valuable for professional development, though its direct impact may vary depending on the specific career path.

CO4. With PO4: While logic and Boolean Algebra are important foundations, their direct impact on professional development may be more evident in specific applications.

CO5. With PO4: While proof techniques contribute to theoretical knowledge, their direct impact on day-today professional development may be limited. CO6. With PO4: Graph theory skills contribute to problem-solving and visualization, enhancing one's capabilities for continued professional development.

CO7. With PO4: Efficient implementation of data structures is a practical skill that directly supports ongoing professional development in various computer science roles.

# Mapping of PO5 With All CO's with Justification:

CO1. With PO5: While well-organized data structures contribute to problem-solving, their direct connection to understanding the societal and environmental impact may be less evident.

CO2. With PO5: The ability to differentiate and select appropriate data structures is important for problemsolving but may not directly correlate with understanding societal and environmental impacts.

CO3. With PO5: While understanding discrete structures is valuable, its direct link to societal and environmental contexts may be less immediate.

CO4. With PO5: Logic and Boolean Algebra may have limited direct relevance to societal and environmental impacts.

CO5. With PO5: Analyzing proof techniques may have limited direct application to understanding the societal and environmental impact of IT solutions.

CO6. With PO5: While graph theory contributes to problem-solving, its direct connection to societal and environmental impacts may be less immediate.

CO7. With PO5: Efficient implementation of data structures is essential for problem-solving, but its direct link to societal and environmental impacts may be less direct.

Mapping of PO6 With All CO's with Justification:

CO1. With PO6: Proficiency in using well-organized data structures is a key aspect of developing expertise in the practice of computing.

CO2. With PO6: The ability to differentiate and select appropriate data structures is a skill that directly contributes to proficiency in solving computational problems.

CO3. With PO6: Understanding discrete structures is crucial for developing proficiency in various computational practices.

CO4. With PO6: While logic and Boolean Algebra are important, their direct impact on the practical aspects of computing proficiency may vary.

CO5. With PO6: Analyzing proof techniques contributes to theoretical knowledge, but their direct impact on practical computing proficiency may be less immediate.

CO6. With PO6: Understanding graph theory enhances proficiency by providing tools for visualizing and simplifying computational problems.

CO7. With PO6: Efficient implementation of data structures is a practical skill that is integral to developing proficiency in the practice of computing.

# Mapping of PO7 With All CO's with Justification :

CO1. With PO7: Proficiency in using well-organized data structures contributes to problem-solving skills, which are important for independent study and research.

CO2. With PO7: The ability to differentiate and select appropriate data structures supports problem-solving skills necessary for independent study and research.

CO3. With PO7: Understanding discrete structures is valuable for independent study and research, providing a theoretical foundation for various applications.

CO4. With PO7: While logic and Boolean Algebra are important, their direct relevance to transitioning to employment may be limited.

CO5. With PO7: Analyzing proof techniques may contribute to theoretical knowledge but may have limited direct impact on transitioning to employment.

CO6. With PO7: Understanding graph theory enhances problem-solving skills, contributing to the capacity for independent study and research.

CO7. With PO7: Efficient implementation of data structures is a practical skill that can enhance the ability to transition to employment in hardware/software companies through hands-on experience.

# Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science

**Title of Paper:** Introduction to Web Technology

**Credit:** 3(4 Lectures/Week)

Paper: II No. of lectures: 48

**Paper Code:** CSCO2302

**OBJECTIVES**: Students successfully completing this course will be able:

1. To understand different Web technologies.

2. To keep pace with the rapidly changing landscape of web application development.

3. To Design dynamic and interactive web pages.

#### **Course Outcomes:**

CO1: Students will able to Design web pages using HTML5, CSS, JavaScript and Bootstrap.

**CO2:** Students will able to Design dynamic, interactive and elegant Web sites.

**CO3**: Students will be able to write a server side application to catch form data sent from client and store it on database.

CO4:Students will able to Analyze a web page and identify its elements and attributes.

**CO5:**Students will able to Create web pages using Cascading Style Sheets. Build dynamic web pages using JavaScript (Client side programming).

CO6: Students will able to Build dynamic web pages using JavaScript (Client side programming).

**CO7:** Students will able to Acquiring the basic concepts of the Web with reference to its architecture.

|        | Title and Contents                                                | No. of<br>Lectures |
|--------|-------------------------------------------------------------------|--------------------|
| Unit 1 | Basics of Web Design                                              |                    |
|        | 1.1 History of the Internet                                       |                    |
|        | 1.2 World Wide Web Consortium (W3C)                               |                    |
|        | 1.3 Personal, Distributed and Client/Server Computing             | 04                 |
|        | 1.4 Key Software Trend: Object Technology                         |                    |
|        | 1.5 Software Technologies                                         |                    |
|        | 1.6 Client Server Architecture                                    |                    |
| Unit 2 | Introduction to HTML5                                             |                    |
|        | 2.1 Difference between HTML & HTML5                               |                    |
|        | 2.2 HTML Document and Basic Structure                             |                    |
|        | 2.3 Working with HTML Text, Heading, Paragraph, formatting        | 12                 |
|        | 2.4 HTML Color, Link, Image                                       |                    |
|        | 2.5 HTML Lists, Tables and Frames                                 |                    |
|        | 2.6 HTML Forms Block, Layout                                      |                    |
|        | 2.7 Browser Portability                                           |                    |
| Unit 3 | Specific Elements of HTML5                                        |                    |
|        | 3.1 Header & Footer                                               |                    |
|        | 3.2 Navigation Section                                            |                    |
|        | 3.3 Article & Aside                                               | 9                  |
|        | 3.4 The Meter Element                                             |                    |
|        | 3.5 Working with Hyperlinks and Multimedia                        |                    |
|        | 3.6 Working with Forms and controls.                              |                    |
| Unit 4 | The Basic of CSS                                                  |                    |
|        | 4.1 Into. Concepts of CSS & Creating of CSS, Using Inline         |                    |
|        | CSS,CSS Color                                                     | 16                 |
|        | 4.2 Using Internal CSS, Using ID's and Classes, Creating External |                    |
|        | CSS.                                                              |                    |
|        | 4.3 Linking to External CSS, Inefficient Selectors and Efficient  |                    |
|        | Selectors.                                                        |                    |
|        | 4.4 HTML Elements State, the CSS Box Model, Fonts                 |                    |
|        | 4.5 Introduction to CSS 3.0                                       |                    |
|        | 4.6 Alpha Color Space, Opacity                                    |                    |

| Unit 5 | JavaScript                                            |   |  |  |  |
|--------|-------------------------------------------------------|---|--|--|--|
|        | 5.1 Introduction to JavaScript                        | 3 |  |  |  |
|        | 5.2 JavaScript Basics – Data Types, Control Structure |   |  |  |  |
|        | 5.3 JavaScript Functions                              |   |  |  |  |
|        | 5.4 Working with events                               |   |  |  |  |
|        | 5.5 JS Popup boxes                                    |   |  |  |  |
|        | 5.6 JavaScript Objects                                |   |  |  |  |
| Unit 6 | Emerging Trends in Web Technologies                   |   |  |  |  |
|        | 6.1 Introduction to –                                 | 4 |  |  |  |
|        | 6.1.1) CMS-Wordpress/Drupal/Joomla                    |   |  |  |  |
|        | 6.1.2 ) jQuery                                        |   |  |  |  |
|        | 6.1.3) AngularJS                                      |   |  |  |  |
|        | 6.1.4) Bootstrap                                      |   |  |  |  |

# Note: Regular Practical assignment on HTML5 is 50% and one mini Project.

## **References:**

- 1) Html & CSS: The Complete Reference, Fifth Edition by Thomas A. Powell and published by McGraw Hill.
- 2) HTML 5 in simple steps by Kogent Learning SolutionsInc., Publisher Dreamtech Press
- 3) Head First HTML with CSS & XHTML Book by Elisabeth Freeman and Eric Freeman.
- 4) The Essential Guide to CSS and HTML Web Design Book by Craig Grannell.
- 5) Beginning XML by Joe Fawcett, Liam R.E. Quin & Danny Ayers Published by John Wiley & Sons, Inc.

| Course     |            | Programme Outcomes (POs) |     |     |     |            |            |  |  |
|------------|------------|--------------------------|-----|-----|-----|------------|------------|--|--|
| Outcomes   | <b>PO1</b> | PO2                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> |  |  |
| CO1        | 3          | 2                        | 2   | 1   | 2   | 2          | 2          |  |  |
| CO2        | 3          | 3                        | 2   | 1   | 2   | 2          | 2          |  |  |
| CO3        | 3          | 3                        | 3   | 1   | 3   | 3          | 2          |  |  |
| CO4        | 2          | 1                        | 1   | 1   | 1   | 2          | 1          |  |  |
| CO5        | 3          | 2                        | 2   | 1   | 2   | 2          | 2          |  |  |
| CO6        | 3          | 3                        | 2   | 1   | 2   | 2          | 2          |  |  |
| <b>CO7</b> | 2          | 1                        | 1   | 1   | 1   | 1          | 1          |  |  |

#### Mapping of this course with Programme Outcomes

#### Weight: 1 - Partially related 2 - Moderately Related 3 - Strongly related

#### Mapping of PO1 with All CO'S

**CO1: PO1**: Strongly relates (3) - This outcome directly applies mathematical and computer fundamentals to design web pages by utilizing HTML5, CSS, JavaScript, and Bootstrap.

**CO2: PO1**: Strongly relates (3) - This outcome requires the application of mathematics, statistics, and computer fundamentals to design dynamic and interactive websites.

**CO3: PO1**: Strongly relates (3) - This outcome involves applying computer fundamentals and knowledge of programming to develop server-side applications for handling form data.

**CO4: PO1**: Moderately relates (2) - This outcome involves applying knowledge of computer fundamentals and HTML to analyze web pages, with a slightly lower emphasis on mathematics and statistics.

**CO5: PO1**: Strongly relates (3) - This outcome directly applies computer fundamentals to create web pages using Cascading Style Sheets (CSS) and dynamic web pages using JavaScript.

**CO6: PO1:** Strongly relates (3) - This outcome involves applying computer fundamentals to build dynamic web pages through client-side programming using JavaScript.

**CO7: PO1:** Moderately relates (2) - This outcome involves understanding the basic concepts of the web and its architecture, with a focus on computer fundamentals.

\_\_\_\_\_

#### Mapping of PO2 with All CO'S

**CO1: PO2**: Moderately relates (2) - Designing web pages involves the use of the latest technologies (HTML5, CSS, JavaScript, Bootstrap) but may not necessarily require in-depth knowledge of various languages.

**CO2: PO2**: Strongly relates (3) - Designing dynamic and interactive websites requires the use of the latest technologies and languages for effective implementation.

**CO3: PO2**: Strongly relates (3) - Writing server-side applications using JSP involves both designing and implementing solutions using the latest technologies and languages.

**CO4: PO2**: Partially relates (1) - Analyzing web pages is more focused on understanding the structure and content rather than actively designing solutions using various languages.

**CO5: PO2**: Moderately relates (2) - Creating web pages with CSS and building dynamic pages with JavaScript require knowledge of the latest technologies but may not cover a broad range of languages.

**CO6: PO2**: Strongly relates (3) - Building dynamic web pages with client-side programming emphasizes the use of the latest technologies and languages for effective implementation.

**CO7: PO2**: Partially relates (1) - Acquiring basic concepts of the web and its architecture involves understanding principles rather than actively designing solutions with various languages.

-----

#### Mapping of PO3 with All CO'S

**CO1: PO3**: Moderately relates (2) - Designing web pages involves the use of modern engineering and IT tools (HTML5, CSS, JavaScript, Bootstrap) but may not explicitly emphasize modeling and prediction techniques.

**CO2: PO3**: Moderately relates (2) - Designing dynamic and interactive websites requires the use of modern tools, but the emphasis may not be on explicit prediction and modeling techniques.

**CO3: PO3**: Strongly relates (3) - Writing server-side applications involves the use of modern engineering and IT tools, especially for database interactions.

**CO4: PO3**: Partially relates (1) - Analyzing a web page may involve modern tools, but it may not explicitly include prediction and modeling techniques.

**CO5: PO3**: Moderately relates (2) - Creating web pages with CSS and building dynamic pages with JavaScript involves using modern tools, but the focus may not be on explicit prediction and modeling techniques.

**CO6: PO3**: Moderately relates (2) - Building dynamic web pages with client-side programming involves modern tools, but may not explicitly include prediction and modeling techniques.

**CO7: PO3**: Partially relates (1) - Acquiring basic concepts of the web and its architecture may involve modern tools, but may not explicitly include prediction and modeling techniques.

# Mapping of PO4 with All CO'S

**CO1: PO4**: Partially relates (1) - Designing web pages with HTML5, CSS, JavaScript, and Bootstrap may not directly address the societal and environmental impact of IT solutions.

**CO2: PO4**: Partially relates (1) - Designing dynamic and interactive websites may not explicitly consider the societal and environmental impact of IT solutions.

**CO3: PO4**: Partially relates (1) - Writing server-side applications may not explicitly consider the societal and environmental impact of IT solutions.

**CO4: PO4**: Partially relates (1) - Analyzing a web page may not directly address the societal and environmental impact of IT solutions.

**CO5: PO4**: Partially relates (1) - Creating web pages with CSS and building dynamic pages with JavaScript may not explicitly consider the societal and environmental impact of IT solutions.

**CO6: PO4**: Partially relates (1) - Building dynamic web pages with client-side programming may not directly address the societal and environmental impact of IT solutions.

**CO7: PO4**: Partially relates (1) - Acquiring basic concepts of the web and its architecture may not explicitly consider the societal and environmental impact of IT solutions.

\_\_\_\_\_

#### Mapping of PO5 with All CO'S

**CO1: PO5**: Moderately relates (2) - Designing web pages involves ethical considerations related to user experience, accessibility, and information presentation, but may not explicitly address broader professional ethics and responsibilities.

**CO2: PO5**: Moderately relates (2) - Designing dynamic and interactive websites involves ethical considerations, such as user privacy and security, but may not explicitly address broader professional ethics.

**CO3: PO5**: Strongly relates (3) - Writing server-side applications involves considerations of professional ethics and responsibilities, especially when dealing with sensitive form data and database interactions.

**CO4: PO5**: Partially relates (1) - Analyzing a web page may not explicitly address broader professional ethics and responsibilities, but ethical considerations may arise in data handling.

**CO5: PO5**: Moderately relates (2) - Creating web pages with CSS and building dynamic pages with JavaScript involves ethical considerations related to user experience and functionality but may not explicitly address broader professional ethics.

**CO6: PO5**: Moderately relates (2) - Building dynamic web pages with client-side programming involves ethical considerations related to user interactions, security, and privacy but may not explicitly address broader professional ethics.

**CO7: PO5**: Partially relates (1) - Acquiring basic concepts of the web and its architecture may not explicitly address broader professional ethics, but ethical considerations may arise in discussions of data transmission and system design.

------

#### Mapping of PO6 with All CO'S

**CO1: PO6**: Moderately relates (2) - Designing web pages may involve both individual work and collaboration in a team, but the emphasis is on individual skills in web design technologies.

**CO2: PO6**: Moderately relates (2) - Designing dynamic and interactive websites may involve both individual and collaborative efforts, emphasizing skills in web design technologies and teamwork.

**CO3: PO6**: Strongly relates (3) - Writing server-side applications involves individual and team work, as it requires collaboration in designing and implementing the application.

**CO4: PO6**: Moderately relates (2) - Analyzing a web page may involve both individual and collaborative efforts, as it requires understanding the structure and attributes of a web page.

**CO5: PO6**: Moderately relates (2) - Creating and building web pages involve both individual and team work, emphasizing skills in web design technologies and potential collaboration in implementing dynamic features.

**CO6: PO6**: Moderately relates (2) - Building dynamic web pages with client-side programming may involve both individual and collaborative efforts, emphasizing skills in JavaScript and teamwork.

**CO7: PO6**: Partially relates (1) - Acquiring basic concepts of the web and its architecture may not explicitly emphasize teamwork but could involve collaborative discussions.

\_\_\_\_\_

#### Mapping of PO7 with All CO'S

**CO1: PO7**: Moderately relates (2) - Designing web pages may contribute to innovation, employability, and entrepreneurial skills by creating opportunities for value creation, but the direct link to entrepreneurship may be moderate.

**CO2: PO7**: Moderately relates (2) - Designing dynamic and interactive websites may contribute to innovation and employability, but the direct link to entrepreneurial skills may be moderate.

**CO3: PO7**: Moderately relates (2) - Writing server-side applications may contribute to innovation, employability, and entrepreneurial skills, but the direct link to entrepreneurship may be moderate.

**CO4: PO7**: Partially relates (1) - Analyzing a web page may not directly contribute to innovation and entrepreneurial skills, but it may indirectly support employability.

**CO5: PO7**: Moderately relates (2) - Creating and building web pages may contribute to innovation and employability, but the direct link to entrepreneurial skills may be moderate.

**CO6: PO7**: Moderately relates (2) - Building dynamic web pages with client-side programming may contribute to innovation and employability, but the direct link to entrepreneurial skills may be moderate.

**CO7: PO7**: Partially relates (1) - Acquiring basic concepts of the web and its architecture may not directly contribute to innovation and entrepreneurial skills, but it may support employability.

# Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science Title of Paper: Lab Course I based On Data structure Credit: 2(3 Hour Practical /batch/Week)

Paper Code:CSCO2303 Paper:III (Lab Course-I) No. of Practical's: 12

#### **Prerequisites**:

- Basic knowledge of algorithms and problem solving.
- Knowledge of C Programming Language.

## **Course Outcome:**

- CO1.To understand different Data structure.
- CO2. Be able to design and analyze the time and space efficiency of the data structure
- CO3.Be capable to identity the appropriate data structure for given problem 4.Have practical knowledge on the applications of data structures.
- CO5.Ability to understand a systematic approach to organizing, writing and debugging C programs
- CO6.Ability to implement linear and non-linear data structure operations using C programs
- CO7.Ability to solve problems implementing appropriate data structures
- ➤ Assignment 1 Sorting Algorithms
  - Bubble Sort
  - Insertion Sort
  - Quick Sort
  - o Merger Sort
- Assignment 2 Recursive Sorting Algorithms
  - Quick sort,
  - Merge Sort
- Assignment 3 Searching Method
  - o Linear search,
  - o Binary search
- Assignment 4 Stack
  - o Static Stack Implementation
  - Dynamic Stack Implementation
- Assignment 5 Queue
  - Static and Dynamic Implementation
  - o Linear Queue,
  - Circular queue
- Assignment 6 Linked List
  - Dynamic Implementation of Singly Linked List
  - Dynamic Implementation of Doubly Linked List
  - Dynamic Implementation of Circular Linked List.
- ➢ Assignment 7 Tree −
  - Binary Search Tree Traversal: Create, add, delete, and display nodes.
- Assignment 8 Graph
  - Adjacency matrix to adjacency list conversion, in degree, out degree

#### Mapping of PO's With All CO's:

| Course   | Programme Outcomes (POs) |     |     |     |     |     |     |  |
|----------|--------------------------|-----|-----|-----|-----|-----|-----|--|
| Outcomes | PO1                      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |  |
| CO1      | 3                        | 3   | 3   | 2   | 2   | 3   | 2   |  |
| CO2      | 3                        | 3   | 2   | 2   | 1   | 2   | 2   |  |
| CO3      | 3                        | 3   | 3   | 2   | 2   | 3   | 3   |  |
| CO4      | 3                        | 3   | 2   | 3   | 2   | 3   | 2   |  |
| CO5      | 2                        | 2   | 2   | 3   | 1   | 3   | 2   |  |
| CO6      | 3                        | 3   | 2   | 3   | 2   | 3   | 3   |  |
| CO7      | 3                        | 3   | 3   | 3   | 2   | 3   | 3   |  |

#### Mapping of PO1 With All CO's with Justification:

CO1. With PO1: Understanding various data structures is fundamental to applying computer science principles to a wide range of applications.

CO2. With PO1: Designing and analyzing the efficiency of data structures directly contribute to applying fundamental principles to various applications in computer science.

CO3. With PO1: The ability to identify the appropriate data structure is crucial in applying fundamental principles to solve diverse problems in computer science applications.

CO4. With PO1: Strongly Related. Practical knowledge of data structure applications directly supports the application of fundamental principles in various computer science contexts.

CO5. With PO1: While understanding programming is essential, its direct link to applying principles in various applications may vary.

CO6. With PO1: Implementing data structure operations using C programs directly aligns with applying fundamental principles to solve a wide range of problems.

CO7. With PO1: Solving problems by implementing appropriate data structures is a direct application of fundamental principles to address various challenges in computer science applications.

#### Mapping of PO2 With All CO's with Justification:

CO1. With PO2: Understanding various data structures is foundational for designing and implementing solutions to significant computational problems.

CO2. With PO2: Designing and analyzing the efficiency of data structures is integral to creating solutions for significant computational problems.

CO3. With PO2: The ability to identify the appropriate data structure is crucial in the design and implementation of solutions to significant computational problems.

CO4. With PO2: Practical knowledge of data structure applications is essential for designing and implementing solutions to significant computational problems.

CO5. With PO2: While understanding programming is crucial, its direct link to designing and implementing solutions may vary.

CO6. With PO2: Implementing data structure operations using C programs is directly related to designing and implementing solutions to significant computational problems.

CO7. With PO2: Solving problems by implementing appropriate data structures is a direct application of designing and implementing solutions to significant computational problems.

#### Mapping of PO3 With All CO's with Justification:

CO1. With PO3: Understanding various data structures is fundamental to imparting a basic understanding of the discipline.

CO2. With PO3: While design and analysis contribute to the understanding of the basics, their direct relationship may vary.

CO3. With PO3: The ability to identify the appropriate data structure is crucial in imparting a basic understanding of the discipline.

CO4. With PO3: Practical knowledge of data structure applications contributes to the practical understanding of the discipline.

CO5. With PO3: Understanding programming approaches is important in imparting a basic understanding of the discipline.

CO6. With PO3: Implementing data structure operations is relevant to understanding the basics, but its direct relationship may vary.

CO7. With PO3: Solving problems through the implementation of appropriate data structures directly contributes to imparting a basic understanding of the discipline.

# Mapping of PO4 With All CO's with Justification:

CO1. With PO4: Understanding various data structures is important for professional development, though its direct connection may vary.

CO2. With PO4: Design and analysis contribute to professional development, but their direct impact on preparation for continued development may vary.

CO3. With PO4: The ability to identify the appropriate data structure is valuable for continued professional development but may not be the sole factor.

CO4. With PO4: Practical knowledge of data structure applications is directly tied to preparing for continued professional development.

CO5. With PO4: Understanding a systematic approach to programming is crucial for continued professional development.

CO6. With PO4: Implementing data structure operations using C programs is directly related to preparing for continued professional development.

CO7. With PO4: Solving problems through the implementation of appropriate data structures is directly tied to preparing for continued professional development.

# Mapping of PO5 With All CO's with Justification:

CO1. With PO5: Understanding data structures is important, but its direct connection to societal and environmental impacts may vary.

CO2. With PO5: Design and analysis contribute more directly to technical aspects, and their connection to societal impacts may be less evident.

CO3. With PO5: Identifying appropriate data structures is relevant to solving real-world problems but may not directly address societal and environmental impacts.

CO4. With PO5: Practical knowledge of data structures applications contributes to understanding real-world scenarios, but the direct link to societal and environmental contexts may vary.

CO5. With PO5: Understanding a systematic approach to programming is more directly tied to technical aspects than societal and environmental impacts.

CO6. With PO5: Implementing data structures in C programs contributes more directly to technical skills, and its connection to societal and environmental impacts may be less immediate.

CO7. With PO5: Solving problems with data structures is essential, but the direct link to societal and environmental contexts may vary.

# Mapping of PO6 With All CO's with Justification:

CO1. With PO6: Understanding various data structures is fundamental to developing proficiency in the practice of computing.

CO2. With PO6: Designing and analyzing the efficiency of data structures contributes to developing proficiency in the practical aspects of computing.

CO3. With PO6: The ability to identify the appropriate data structure is crucial for developing proficiency in the practice of computing.

CO4. With PO6: Practical knowledge of data structure applications is directly tied to developing proficiency in the practice of computing.

CO5. With PO6: Understanding a systematic approach to programming is fundamental to developing proficiency in the practical aspects of computing.

CO6. With PO6: Implementing data structure operations using C programs is directly related to developing proficiency in the practice of computing.

CO7. With PO6: Solving problems through the implementation of appropriate data structures is crucial for developing proficiency in the practice of computing.

## Mapping of PO7 With All CO's with Justification:

CO1. With PO7: Understanding various data structures contributes to the capacity for independent study and research, but it may not be the sole factor.

CO2. With PO7: Design and analysis contribute to independent study and research skills, but their direct impact may vary.

CO3. With PO7: The ability to identify the appropriate data structure is crucial for independent study and research, contributing to skills needed for transitioning to employment.

CO4. With PO7: Practical knowledge of data structure applications contributes to the practical understanding needed for independent study and research.

CO5. With PO7: Understanding a systematic approach to programming is important for independent study and research but may not be the sole factor.

CO6. With PO7: Implementing data structure operations are directly related to independent study and research skills, contributing to transitioning to employment.

CO7. With PO7: Solving problems through the implementation of appropriate data structures is crucial for developing the capacity for independent study and research, supporting transitioning to employment.

# Class: S.Y. B. Sc.(Computer Science) (Semester- III)

Subject: Computer Science Title of Paper: Lab Course II based On Web Technology Credit: 2(3 Hour Practical/Week/batch)

Paper Code: CSCO2304 Paper: IV (Grade) No. of Practical: 13

**OBJECTIVES**: Students successfully completing this course will be able:

- 1. To understand different Web technologies.
- 2. To keep pace with the rapidly changing landscape of web application development.
- 3. To Design dynamic and interactive web pages.

# **Learning Outcome:**

**CO1:** Students will practically implement technologies like HTML5, CSS, JavaScript and Bootstrap.

CO2: Students will Apply HTML5 technologies to design dynamic, interactive and elegant Web Sites.

**CO3:** Students will Analyze a web page and identify its elements and attributes.

**CO4:** Students will Create web pages using Cascading Style Sheets.

**CO5:** Students will Practically Build dynamic web pages using JavaScript (Client-side programming).

**CO6:** Students will Apply Bootstrap technologies to design dynamic, interactive and elegant Web Sites. **CO7:** Students will Practically implement and Design dynamic, interactive and elegant Web sites.

|            | Assignment on Web Technology Using (HTML5, CSS & Java Script)                                    |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| Sr.<br>No. | Assignment Name                                                                                  |  |  |  |  |
| 1          | Be acquainted with elements, Tags and basic structure of HTML files.                             |  |  |  |  |
| 2          | Develop the concept of basic and advanced text formatting.                                       |  |  |  |  |
| 3          | Practice the use of multimedia components in HTML documents.                                     |  |  |  |  |
| 4          | Designing of webpage-Document Layout, Working with List, Working with Tables.                    |  |  |  |  |
| 5          | Practice Hyper linking, Designing of webpage-Working with Frames, Forms and Controls.            |  |  |  |  |
| 6          | Prepare creating style sheet, CSS properties, Background, Text, Font and styling etc.            |  |  |  |  |
| 7          | Working with List, HTML elements box, Positioning and Block properties in CSS.                   |  |  |  |  |
| 8          | Designing with cascading style sheet-Internal and External style sheet.                          |  |  |  |  |
| 9          | Working with CSS 3.0, Alpha Color Space, Opacity                                                 |  |  |  |  |
| 10         | Practice the use JavaScript Basics Programs Data Types, Control Structure                        |  |  |  |  |
| 11         | Develop the concept of basicand advance using JavaScript Functions                               |  |  |  |  |
| 12         | Practicethe use JavaScript events (onClick, onMousemove and onMouseover events of button object) |  |  |  |  |
| 13         | Designing event driven JavaScript program and use Popup boxes                                    |  |  |  |  |
| 14         | Working with JavaScript Objects                                                                  |  |  |  |  |

| Course     | Programme Outcomes (POs) |     |     |     |     |     |            |  |  |
|------------|--------------------------|-----|-----|-----|-----|-----|------------|--|--|
| Outcomes   | <b>PO1</b>               | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> |  |  |
| CO1        | 3                        | 3   | 2   | 1   | 2   | 2   | 1          |  |  |
| CO2        | 3                        | 3   | 2   | 1   | 2   | 2   | 1          |  |  |
| CO3        | 3                        | 1   | 1   | 1   | 1   | 2   | 1          |  |  |
| CO4        | 3                        | 2   | 2   | 1   | 2   | 2   | 1          |  |  |
| CO5        | 3                        | 3   | 2   | 1   | 2   | 2   | 1          |  |  |
| CO6        | 3                        | 3   | 2   | 1   | 2   | 2   | 1          |  |  |
| <b>CO7</b> | 3                        | 3   | 2   | 1   | 2   | 2   | 1          |  |  |

#### Mapping of this course with Programme Outcomes

#### Weight:1 - Partially related2 - Moderately Related3 - Strongly related

#### Mapping of PO1 with All CO'S

**CO1: PO1**: Strongly relates (3) - The application of technologies like HTML5, CSS, JavaScript, and Bootstrap directly aligns with the computer knowledge, involving mathematics, statistics, and computer fundamentals.

**CO2: PO1**: Strongly relates (3) - Applying HTML5 technologies for dynamic and interactive web design aligns with the computer knowledge and fundamentals specified in PO1.

**CO3: PO1**: Strongly relates (3) - Analyzing a web page requires applying knowledge of HTML elements and attributes, which is part of the computer knowledge and fundamentals outlined in PO1.

**CO4: PO1**: Strongly relates (3) - Creating web pages with Cascading Style Sheets (CSS) involves applying knowledge of design principles and computer fundamentals specified in PO1.

**CO5: PO1**: Strongly relates (3) - Building dynamic web pages with client-side programming (JavaScript) aligns with the application of computer knowledge and fundamentals.

**CO6: PO1**: Strongly relates (3) - Applying Bootstrap technologies for dynamic and interactive web design aligns with the computer knowledge and fundamentals specified in PO1.

**CO7: PO1**: Strongly relates (3) - Designing dynamic and interactive web sites involves applying computer knowledge and fundamentals, including mathematics, statistics, and programming.

-----

#### Mapping of PO2 with All CO'S

**CO1: PO2:** Strongly relates (3) - Applying these technologies aligns with designing and developing solutions for IT applications using the latest technologies, as specified in PO2.

**CO2: PO2:** Strongly relates (3) - Applying HTML5 technologies for dynamic and interactive web design is directly aligned with designing solutions for IT applications using the latest technologies.

**CO3: PO2:** Partially relates (1) - While analyzing a web page is part of the development process, it may not explicitly capture the design aspect of solutions using the latest technologies.

**CO4: PO2:** Moderately relates (2) - Creating web pages with Cascading Style Sheets (CSS) is part of the solution development process, but the explicit mention of the latest technologies is not emphasized.

**CO5: PO2:** Strongly relates (3) - Building dynamic web pages with client-side programming (JavaScript) aligns with designing and implementing solutions using the latest technologies.

**CO6: PO2:** Strongly relates (3) - Applying Bootstrap technologies for dynamic and interactive web design directly aligns with designing solutions using the latest technologies.

**CO7: PO2:** Strongly relates (3) - Designing dynamic and interactive web sites is directly aligned with designing solutions for IT applications, as specified in PO2.

\_\_\_\_\_

#### Mapping of PO3 with All CO'S

**CO1: PO3:** Moderately relates (2) - Applying these technologies is part of modern tool usage, but the direct connection to the application of appropriate techniques and resources may be moderate.

**CO2: PO3:** Moderately relates (2) - Applying HTML5 technologies for dynamic and interactive web design contributes to modern tool usage, but the connection to prediction and modeling may be moderate.

**CO3: PO3:** Partially relates (1) - Analyzing a web page involves modern tool usage, but the direct connection to prediction and modeling is not explicitly mentioned.

**CO4: PO3:** Moderately relates (2) - Creating web pages with Cascading Style Sheets (CSS) is part of modern tool usage, but the emphasis on prediction and modeling is not explicit.

**CO5: PO3:** Moderately relates (2) - Building dynamic web pages with client-side programming (JavaScript) contributes to modern tool usage, but the connection to prediction and modeling may be moderate.

**CO6: PO3:** Moderately relates (2) - Applying Bootstrap technologies for dynamic and interactive web design is part of modern tool usage, but the emphasis on prediction and modeling is not explicit.

**CO7: PO3:** Moderately relates (2) - Designing dynamic and interactive web sites involves modern tool usage, but the connection to prediction and modeling may be moderate.

\_\_\_\_\_

#### Mapping of PO4 with All CO'S

**CO1: PO4:** Partially relates (1) - The application of technologies is not explicitly connected to understanding the impact on societal and environmental contexts or demonstrating knowledge of sustainable development.

**CO2: PO4:** Partially relates (1) - The application of HTML5 technologies for web design is not explicitly connected to understanding societal and environmental impact or demonstrating knowledge of sustainable development.

**CO3: PO4:** Partially relates (1) - Analyzing a web page does not explicitly address understanding societal and environmental impact or demonstrating knowledge of sustainable development.

**CO4: PO4:** Partially relates (1) - Creating web pages with Cascading Style Sheets (CSS) is not explicitly connected to understanding societal and environmental impact or demonstrating knowledge of sustainable development.

**CO5: PO4:** Partially relates (1) - Building dynamic web pages with client-side programming (JavaScript) is not explicitly connected to understanding societal and environmental impact or demonstrating knowledge of sustainable development.

**CO6: PO4:** Partially relates (1) - Applying Bootstrap technologies for web design is not explicitly connected to understanding societal and environmental impact or demonstrating knowledge of sustainable development.

**CO7: PO4:** Partially relates (1) - Designing dynamic and interactive web sites is not explicitly connected to understanding societal and environmental impact or demonstrating knowledge of sustainable development.

\_\_\_\_\_

#### Mapping of PO5 with All CO'S

**CO1: PO5:** Moderately relates (2) - Applying technologies involves considerations of ethical principles related to responsible use and design, but the direct link to professional ethics and responsibilities may be moderate.

**CO2: PO5:** Moderately relates (2) - Applying HTML5 technologies for web design involves ethical considerations, but the direct connection to professional ethics and responsibilities may be moderate.

**CO3: PO5:** Partially relates (1) - Analyzing a web page may involve ethical considerations, but the direct link to professional ethics and responsibilities is not explicitly mentioned.

**CO4: PO5:** Moderately relates (2) - Creating web pages with Cascading Style Sheets (CSS) involves ethical considerations related to design principles, but the direct link to professional ethics and responsibilities may be moderate.

**CO5: PO5:** Moderately relates (2) - Building dynamic web pages with client-side programming (JavaScript) involves ethical considerations, but the direct connection to professional ethics and responsibilities may be moderate.

**CO6: PO5:** Moderately relates (2) - Applying Bootstrap technologies for web design involves ethical considerations, but the direct link to professional ethics and responsibilities may be moderate.

**CO7: PO5:** Moderately relates (2) - Designing dynamic and interactive web sites involves ethical considerations, but the direct connection to professional ethics and responsibilities may be moderate.

\_\_\_\_\_

#### Mapping of PO6 with All CO'S

**CO1: PO6:** Moderately relates (2) - Applying technologies involves individual work, but the direct connection to functioning in diverse teams is not explicitly mentioned.

**CO2: PO6:** Moderately relates (2) - Applying HTML5 technologies for web design involves individual skills, but the connection to team collaboration is not explicitly emphasized.

**CO3: PO6:** Moderately relates (2) - Analyzing a web page may involve both individual and collaborative efforts, contributing to functioning in diverse teams to some extent.

**CO4: PO6:** Moderately relates (2) - Creating web pages with Cascading Style Sheets (CSS) may involve individual work, but the direct connection to team collaboration is not explicitly mentioned.

**CO5: PO6:** Moderately relates (2) - Building dynamic web pages with client-side programming (JavaScript) may involve individual and collaborative efforts, contributing to functioning in diverse teams to some extent. **CO6: PO6:** Moderately relates (2) - Applying Bootstrap technologies for web design involves individual

skills, but the connection to team collaboration is not explicitly emphasized.

**CO7: PO6:** Moderately relates (2) - Designing dynamic and interactive web sites involves individual skills, but the connection to team collaboration is not explicitly emphasized.

\_\_\_\_\_

#### Mapping of PO7 with All CO'S

**CO1: PO7:** Partially relates (1) - Applying technologies is a component of innovation and employability, but the direct connection to identifying opportunities, creating value, and pursuing entrepreneurial skills is not explicitly mentioned.

**CO2: PO7:** Partially relates (1) - Applying HTML5 technologies for web design is a component of innovation and employability, but the direct connection to entrepreneurial skills and creating value is not explicitly emphasized.

**CO3: PO7:** Partially relates (1) - Analyzing a web page is not explicitly linked to innovation, employability, or entrepreneurial skills in the provided context.

**CO4: PO7:** Partially relates (1) - Creating web pages with Cascading Style Sheets (CSS) is a component of employability, but the direct connection to innovation and entrepreneurial skills is not explicitly mentioned.

**CO5: PO7:** Partially relates (1) - Building dynamic web pages with client-side programming (JavaScript) is a component of employability, but the direct connection to innovation and entrepreneurial skills is not explicitly emphasized.

**CO6: PO7:** Partially relates (1) - Applying Bootstrap technologies for web design is a component of employability, but the direct connection to innovation and entrepreneurial skills is not explicitly mentioned.

**CO7: PO7:** Partially relates (1) - Designing dynamic and interactive web sites is a component of employability, but the direct connection to innovation and entrepreneurial skills is not explicitly emphasized.

\_\_\_\_\_