

Anekant Education Society's

Tuljaram Chaturchand College, Baramati.

(Autonomous)

(Faculty of Science & Technology)

S.Y.B.Sc. (Environmental Science) Semester-IV

For Department of Environmental Science Tuljaram Chaturchand College, Baramati.

Programme Specific Outcomes (PSOs)

PO1: Disciplinary Knowledge: Demonstrate comprehensive knowledge of the disciplines that form a part of a graduate programme. Execute strong theoretical and practical understanding generated from the specific graduate programme in the area of work.

PO2: Critical Thinking and Problem solving: Exhibit the skills of analysis, inference, interpretation and problem-solving by observing the situation closely and design the solutions.

PO3: Social competence: Display the understanding, behavioral skills needed for successful social adaptation, work in groups, exhibit thoughts and ideas effectively in writing and orally

PO4: Research-related skills and Scientific temper: Develop the working knowledge and applications of instrumentation and laboratory techniques. Able to apply skills to design and conduct independent experiments, interpret, establish hypothesis and inquisitiveness towards research.

PO5: Trans-disciplinary knowledge: Integrate different disciplines to uplift the domains of cognitive abilities and transcend beyond discipline-specific approaches to address a common problem

PO6: Personal and professional competence: Performing dependently and also collaboratively as a part of a team to meet defined objectives and carry out work across interdisciplinary fields. Execute interpersonal relationships, self- motivation and adaptability skills and commit to professional ethics.

PO7: Effective Citizenship and Ethics: Demonstrate empathetic social concern and equity centred national development, and ability to act with an informed awareness of moral and ethical issues and commit to professional ethics and responsibility.

PO8: Environment and Sustainability: Understand the impact of the scientific solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO9: Self-directed and Life-long learning: Acquire the ability to engage in independent and life-long learning in the broadest context of socio-technological changes.

Anekant Education of Society's Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati (Autonomous)

SYLLABUS (CBCS) FOR S. Y. B. Sc. Environmental Science (w.e.f. June, 2023) Academic Year 2023-2024

Class	Semester	Paper Code	Title of Paper	No. of Credits
S.Y.B.Sc.	III	USES231	Natural Resources	3
		USES232	Environmental Pollution-I	3
		USES233	Practical based on USES231 & USES232	2
	IV	USES241	Solid and Hazardous Waste Management	3
		USES242	Environmental Pollution -II	3
		USES243	Practical based on USES241 & USES242	2

SYLLABUS

SECOND YEAR B.Sc. ENVIRONMENTAL SCIENCE ACADEMIC YEAR 2023-2024 SEMESTER - IV

DEPARTMENT OF ENVIRONMENTAL SCIENCE

A. Learning objectives:

- 1) Create a personal inventory of consumption of natural resources.
- 2) To make the students aware about resources and their uses.
- 3) To learn about interrelationship and discipline in environment science.
- 4) Students will learn how to assess pollution sources.
- 5) To improve the quality of the environment and to encourage the sustainable management of resources.
- 6) To provide general understanding of quality of air and impact on local and global effects of air pollution on human, materials, properties and vegetation.
- 7) Environmental pollution aims at changing climate and weather conditions.

B. Learning outcomes:

On completion of this subject, students will able to:

- 1) Students will understand the basic principles of livestock production.
- 2) Students will understand the basic concepts of laws pertaining to agriculture and/or evaluation of land use for various agricultural practices.
- 3) Students will be able to apply knowledge to solve problems related to crop production and plant growth.
- 4) Students will have a greater knowledge of how natural resources relate to the economy and environment, both currently and in the future.
- 5) Students will be evaluating consequences of human exposure to pollution and its impacts to environmental quality.
- 6) Ability to demonstrate sound understanding of the waste generation process and characteristics of different types of solid wastes.
- 7) Ability to assess the underlying science behind the waste driven pollution.

Class : S. Y. B. Sc. (Semester - IV)

Paper Code : USES 241

Paper : I Title of Paper : Solid and Hazardous Waste Management

Credit: 3 No. of lecture: 48

A. Learning objectives:

1) To understand basics of solid wastes.

- 2) To make the students aware about solid waste processing, recovery and energy generation.
- **3)** Minimize the Production of Waste.
- **4)** Proper management practices help minimize the garbage and scraps that need handling.
- **5**) Reduce Pollution Effects. Secondly, it's vital to lower the impact garbage has on pollution.
- **6)** Protect Groundwater Sources.
- 7) To characterize the waste and apply the knowledge of laws for municipal solid waste management, for handling of biomedical wastes and for handling of plastic wastes.

B. Course outcomes:

- 1) Student understands resources in day to day life.
- 2) Students will be able to understand future sustainability of natural resources.
- 3) Students understand conservation of natural resources.
- 4) Students understand conflict and management of natural resources.
- 5) Plan a solid waste management system for decision makers.
- 6) To minimize the amount of waste generated and to promote the reuse and recycling of materials.
- 7) This can be achieved through waste reduction strategies, such as reducing packaging and promoting sustainable lifestyles.

UNIT I: Solid Waste (12L)

- Solid Waste types (Domestic, Biomedical, industrial waste etc.) and sources
- Solid waste characteristics, generation rates, solid waste components,
- Proximate and ultimate analyses of solid wastes.
- Solid waste collection and transportation: container systems hauled and stationary, layout of collection routes, transfer stations and transportation.

UNIT II: Solid waste processing and recovery:

(12L)

- Solid waste processing and recovery Recycling, recovery of materials for recycling and direct manufacture of solid waste products.
- Energy generation from solid waste (Fuel pellets, Refuse derived fuels), composting and Vermicomposting, biomethanation of solid waste.
- Disposal of solid wastes sanitary land filling and its management, incineration of solid waste.

UNIT III: Hazardous waste

(12L)

- Hazardous waste Types, characteristics and
- Health impacts.
- Hazardous waste management: Treatment Methods neutralization, oxidation reduction, precipitation, solidification, stabilization, incineration and final disposal.

UNIT IV: Plastic waste and e-waste

(12L)

- Plastic waste: sources, consequences
- Management methods of plastic waste
- E-waste: Sources, classification & effects of e-waste
- Methods of handling and disposal

References:

- 1) White P.R. et al, Integrated Solid Waste Management, Lewis Publisher, 1989.
- 2) Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Govt. of India, New Delhi, 2000.
- 3) David L.H.F. and Liptak D. G., Hazardous waste and solid waste, Lewis Publisher, 2000.
- 4) Oberoi N.K, Environmental Management, (2nd Edition) Excel Books, New Delhi, 2003.
- 5) Ashok K. Rathoure ,Zero Waste: Management Practices for Environmental Sustainability, 2019.
- 6) O. P. Gupta, Elements of Solid Hazardous Waste and Management, 2018.
- 7) Handbook of Industrial and Hazardous Waste Treatment by Lawrence K. Wang, 2004.
- 8) Solid and Hazardous Waste Management: Science and Engineering, M.N. Rao, Razia Sultana, Sri Harsha Kota 2016.

Mapping of Program Outcomes with Course Outcomes

Programme Outcomes (POs)										
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
Outcomes										
CO1			3		2		3			
CO2		2		3		2			3	
CO3	2							3		
CO4	2	2								
CO5		2						3		
CO6	2									
CO7							3		3	

Justification for the mapping

PO1: Disciplinary Knowledge:

CO3: Gain important details about the collection and transport of solid waste.

CO4: Identify different types of solid waste, understand their characteristics, and classify them based on their properties.

CO6: Understand hazardous waste classification, types, and sources.

PO2: Critical Thinking and Problem solving:

CO2: Apply critical thinking skills in the systematic study of solid waste issues and devising effective solutions.

CO4: Utilize problem-solving skills to identify and classify different types of solid waste based on their properties.

CO5: Evaluate economic and environmental benefits associated with recycling and resource recovery.

PO3: Social competence:

CO1: Enhance social competence by understanding the impact of solid waste generation issues on the community.

PO4: Research-related skills and Scientific temper:

CO2: Develop research-related skills through a systematic study of solid waste issues.

CO7: Apply scientific temper in exploring various methods of hazardous waste management, including treatment, storage, and disposal.

PO5: Trans-disciplinary knowledge

CO1: Integrate trans-disciplinary knowledge in understanding and addressing solid waste generation issues.

PO6: Personal and professional competence

CO2: Deepen personal and professional competence by actively participating in the systematic study of solid waste issues.

PO7: Effective Citizenship and Ethics:

CO1: Promote effective citizenship by understanding and addressing the social and environmental impacts of solid waste generation issues.

CO7: Consider ethical considerations in exploring various methods of hazardous waste management.

PO8: Environment and Sustainability:

CO3: Promote environmental sustainability by learning important details about the collection and transport of solid waste.

CO5: Advocate for the economic and environmental benefits of recycling and resource recovery.

PO9: Self-directed and Life-long learning:

CO2: Cultivate self-directed learning by actively engaging in a systematic study of solid waste issues.

CO7: Foster life-long learning by exploring various methods of hazardous waste management and staying updated on advancements.

Class : S. Y. B. Sc. (Semester - IV)

Paper Code : USES 242

Paper : II Title of Paper : Environmental Pollution -II

Credit: 3 No. of lecture: 48

A. Learning objectives:

1) To learn about air pollution, noise pollution.

- 2) To make the students aware of noise pollution.
- 3) To know basic pollution types, components, phyto-remediation, etc
- 4) To make the students aware about pollution and control of pollution.
- 5) To aware students about effects of pollution in day to day life.
- 6) To know treatments for maintaining quality of water and soil.
- 7) To provide general understanding of quality of air and impact on local and global effects of air pollution on human, materials, properties and vegetation.

B. Course outcomes:

- 1) Students will be able to understand future sustainability of natural resources.
- 2) Ability to suggest the environmental control /management plan for environmental pollution problems.
- 3) Students understand conflict and management of natural resources.
- 4) To make the surroundings cleaner and greener for the current as well as future generations.
- 5) To aware the surrounding people of the rapidly depleting natural resources and make them contribute to the conservation of the same.
- 6) Ability to identify and quantify the magnitude and intensity of Environmental pollution problems.
- 7) Ability to undertake environmental sampling and analysis with respect to air, water and noise pollution.

UNIT I: Air Pollution (12L)

- Sources and types of Pollutants Natural and anthropogenic sources, primary and secondary pollutants. Criteria air pollutants. Sampling and monitoring of air pollutants (gaseous and particulates).
- Principles and instruments for measurements of (i) ambient air pollutants concentration and (ii) stack emissions.
- Indian National Ambient Air Quality Standards. Impact of air pollutants on human health, plants and materials. Dispersion of air pollutants. Mixing height/depth, Gaussian plume model, line source model and area source model.

UNIT II: Control of Air Pollution

(12L)

- At source reduction: a) Raw material changes. b) Process / Operational changes. c) Equipment modification / replacement.
- Air Pollution control technology: Principle a) Condensation. b) Absorption. c) Adsorption. d) Filtration. e) Electrostatic Precipitation. f) Gravity Settling. g) Wet scrubbing, settling chamber.
- Control of emissions from automobiles. a) Redesigned engines. b) Catalytic converters etc.

UNIT III: Noise Pollution

(12L)

- Sources, weighting networks, measurement of noise indices (Leq, L10, L90, L50, LDN, TNI).
- Noise dose and Noise Pollution standards.
- Vibrations and their measurements.
- Impact of noise and vibrations on human health.

UNIT IV - Control of Noise Pollution

(12 L)

- Noise Control Techniques a) Sound Insulation. b) Sound Absorption. c) Vibration Damping. d) Vibration Isolation. e) Active Noise Control/ Noise Cancellation.
- Control at Source a) Selection & Maintenance of machines. b) Control over vibrations.
- Control in Transmission Path
- Control at Receiver a) Using protective equipments. b) Job rotation to reduce exposure etc.

References:

- 1. Environmental chemistry by B. K. Sharma, Goel publication house, Meerut, Sixth revised edition 2001.
- 2. Ecology and environment by P. D. Sharma, Rastogi publications, Meerut. Seventh edition 2004.
- 3. Environmental Pollution Control Engineering: C.S.Rao,New Age International (P) Ltd. (1991)
- 4. Environmental Science and Engineering: Dr.N.Arumugam,Prof.V.Kumaresan(Saras Publication, Kottar, Dist. Kanyakumari)
- 5. Perspectives in Environmental Studies: Anubha Kaushik, C.P.Kaushik (New Age International(P) Limited, Publishers)

- 6. Cheremisinoff, N. P., Bio-Technology for Waste and Wastewater Treatment William Andrew Publishing, 1996.
- 7. Fellenberg, G., Chemistry of Pollution, John Wiley and Sons, 1999.
- 8. El-Halwagi M.M., Pollution Prevention through Process Integration, AP. 1997

Mapping of Program Outcomes with Course Outcomes

Programme Outcomes (POs)										
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
Outcomes										
CO1	3		3		2		3			
CO2		3				2				
CO3		2		3					2	
CO4				3				3	3	
CO5								3		
CO6				2						
CO7				2			3			

Justification for the mapping

PO1: Disciplinary Knowledge:

CO1: Attain comprehensive knowledge about various forms of environmental pollution, their sources, and causes.

PO2: Critical Thinking and Problem solving:

CO2: Develop critical thinking skills to understand the long-term and short-term effects of pollution on human health and ecosystems.

CO3: Apply problem-solving skills in learning methods for monitoring and measuring pollution levels and interpreting related data.

PO3: Social competence:

CO1: Foster social competence by understanding the societal implications of various forms of environmental pollution.

PO4: Research-related skills and Scientific temper:

CO3: Develop research-related skills in methods for monitoring and measuring pollution levels and interpreting related data.

CO4: Apply scientific temper in exploring strategies and technologies for controlling air pollution.

CO6: Apply scientific temper to understand the sources and effects of noise pollution.

CO7: Explore measures and regulations for controlling and mitigating noise pollution with a scientific mindset.

PO5: Trans-disciplinary knowledge

CO1: Integrate trans-disciplinary knowledge by understanding various forms of environmental pollution and their interconnectedness.

PO6: Personal and professional competence

CO2: Deepen personal and professional competence by understanding the health and ecological effects of pollution.

PO7: Effective Citizenship and Ethics:

CO1: Promote effective citizenship by understanding the environmental impact and societal causes of pollution.

CO7: Explore measures and regulations for controlling and mitigating noise pollution with ethical considerations.

PO8: Environment and Sustainability:

CO4: Advocate for strategies and technologies that contribute to the control of air pollution.

CO5: Understand the role of air quality management in urban and industrial settings, advocating for environmental sustainability.

PO9: Self-directed and Life-long learning:

CO3: Cultivate self-directed learning by actively engaging in methods for monitoring and measuring pollution levels and interpreting related data.

CO4: Foster life-long learning by staying updated on advancements in strategies and technologies for controlling air pollution.

Class : S. Y. B. Sc. (Semester - III)

Paper Code : USES 243

Paper : III Title of Paper : Practical based on USES 241 and USES 242

Credit : 2 No. of Practicals: 13

A) Learning objectives:

1) To understand the basics of sample collection of water and soil.

- 2) To make the students aware about medicinal and economical plants around them.
- 3) To make student aware about renewable energy resources around them.
- 4) To field experience of water treatment plant.
- 5) To understand sampling and analysis of air pollutants.
- 6) To understand standards and measurement of noise
- 7) To understand air pollution impacts on chlorophyll contents.

B) Course outcomes:

- 1) Imparts conceptual knowledge of natural resources, and pollution.
- 2) Students will understand the basics knowledge of soil and water quality parameters in day to day life.
- 3) Students will acquire the knowledge about sustainable use of renewable energy resources.
- 4) Students will be able to understand easy way to save water and prevent soil erosion and flood hazard.
- 5) Students will understand handling of air pollutant sampling instrument
- 6) Students will acquire the knowledge about air pollution control technologies.
- 7) Students will understand solid waste management techniques.
- 1. Study of principal and function of air volume sample.
- 2. Determination of SO_x from given sample.
- 3. Estimation of residual chlorine from the given water sample.
- 4. Determination of total dissolved solids from waste water sample.
- 5. Determination of the total chlorophyll content from the plant in clean and polluted environment.
- 6. Study of principal and function of settling chamber
- 7. Determination of noise pollution by dB meter
- 8. Study of treatment for decomposable solid waste-vermi-composting.
- 9. Demonstration noise pollution control devices.
- 10. Visit to air pollution control technology- Noise cancellation and sound proofing.
- 11. Documentary on sanitary land filling of solid waste.
- 12. Visit to any Vermi-composting plant / Water filtration unit/ Sewage treatment plant/ Biogas unit and submission of GEOTAG photo print at the practical examination.

*Any other practical's related to syllabus

References:

- 1. Environmental Science: A Practical Manual Book by G Lakshmi Swarajya and P Prabhu Prasadini (2018).
- 2. Environmental Chemical Analysis Laboratory Manual, Prepared by Dr. Erik Krogh, Dr. Chris Gill, Shelley Gellein, and Peter Diamente Department of Chemistry, 2018
- 3. Environmental Chemistry: S. e. Manahan
- 4. The Chemistry of Our Environment: R. A. Hom

Mapping of Program Outcomes with Course Outcomes

Programme Outcomes (POs)										
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	
CO1	2					2			2	
CO2		2		3	2			3	2	
CO3		3								
CO4				3				3		
CO5										
CO6				3						
CO7			2	3			2			

Justification for the mapping

PO1: Disciplinary Knowledge:

CO1: Reinforce theoretical concepts and cultivate hands-on skills in environmental studies.

PO2: Critical Thinking and Problem solving:

CO2: Develop critical thinking skills by collecting and analyzing environmental samples to measure pollutant concentrations.

CO3: Apply problem-solving skills in interpreting monitoring results and drawing conclusions about the extent of pollution.

PO3: Social competence:

CO7: Analyze the effects of pollution on plants and their chlorophyll levels, contributing to an understanding of the ecological and social impact of pollution.

PO4: Research-related skills and Scientific temper:

CO2: Enhance research-related skills by collecting and analyzing environmental samples to measure pollutant concentrations.

CO4: Develop scientific temper through conducting air quality measurements using air samplers and analyzers with different analyzing methods.

CO6: Apply scientific methods in identifying and quantifying pollutants in water samples through water analysis tests.

CO7: Conduct scientific analysis of the effect of pollution on plants and their chlorophyll levels.

PO5: Trans-disciplinary knowledge

CO2: Integrate trans-disciplinary knowledge by collecting and analyzing environmental samples, recognizing the interconnectedness of various environmental factors.

PO6: Personal and professional competence

CO1: Deepen personal and professional competence by reinforcing theoretical concepts and developing hands-on skills in environmental monitoring.

PO7: Effective Citizenship and Ethics:

CO7: Analyze the effect of pollution on plants and their chlorophyll levels with ethical considerations for environmental impact and conservation.

PO8: Environment and Sustainability:

CO2: Advocate for environmental sustainability by collecting and analyzing environmental samples to measure pollutant concentrations.

CO4: Apply knowledge of air quality measurements to contribute to strategies for environmental sustainability.

PO9: Self-directed and Life-long learning:

CO1: Cultivate self-directed learning by reinforcing theoretical concepts and developing hands-on skills independently.

CO2: Foster life-long learning by staying updated on advancements in environmental monitoring techniques.