

Anekant Education Society's

TuljaramChaturchand College, Baramati

(Autonomous)

Two Year Post Graduate Degree Program in Computer Science (Faculty of Science & Technology)

CBCS Syllabus

M.Sc. (Computer Science) Part-I Semester -II

For Department of Computer Science Tuljaram Chaturchand College, Baramati

Choice Based Credit System Syllabus (2023 Pattern)

(As Per NEP 2020)

To be implemented from Academic Year 2023-2024

(Eligibility: B.Sc. Computer Science)

AES's T. C. College (Autonomous), Baramati. CBCS Syllabus 2023 Pattern as per NEP 2020

Title of the Programme: M.Sc. (Computer Science)

Preamble

AES's Tuljaram Chaturchand College has made the decision to change the syllabus of across various faculties from June, 2023 by incorporating the guidelines and provisions outlined in the National Education Policy (NEP), 2020. The NEP envisions making education more holistic and effective and to lay emphasis on the integration of general (academic) education, vocational education and experiential learning. The NEP introduces holistic and multidisciplinary education that would help to develop intellectual, scientific, social, physical, emotional, ethical and moral capacities of the students. The NEP 2020 envisages flexible curricular structures and learning based outcome approach for the development of the students. By establishing a nationally accepted and internationally comparable credit structure and courses framework, the NEP 2020 aims to promote educational excellence, facilitate seamless academic mobility, and enhance the global competitiveness of Indian students. It fosters a system where educational achievements can be recognized and valued not only within the country but also in the international arena, expanding opportunities and opening doors for students to pursue their aspirations on a global scale.

In response to the rapid advancements in science and technology and the evolving approaches in various domains of Computer Science and related subjects, the Board of Studies in Computer Science at Tuljaram Chaturchand College, Baramati - Pune, has developed the curriculum for the first semester of M.Sc.(CS) Part-I Computer Science, which goes beyond traditional academic boundaries. The syllabus is aligned with the NEP 2020 guidelines to ensure that students receive an education that prepares them for the challenges and opportunities of the 21st century. This syllabus has been designed under the framework of the Choice Based Credit System (CBCS), taking into consideration the guidelines set forth by the National Education Policy (NEP) 2020, LOCF (UGC), NCrF, NHEQF, Prof. R.D. Kulkarni's Report, Government of Maharashtra's General Resolution dated 20th April and 16th May 2023, and the Circular issued by SPPU, Pune on 31st May 2023.

A degree in Computer Science subject equips students with the knowledge and skills necessary for a diverse range of fulfilling career paths-Career in Computer Science is considered one of the most high-paying jobs and is full of opportunities; particularly when India's prowess in information technology industry is recognized across the globe. The pool of talented computer professionals working in IT companies of the USA, Canada and other countries shows that IT can take a person to higher levels. Numerous IT companies from India employ huge number of computer professionals in their Indian and overseas offices. Students who are interested in programming, software development, and have good analytical and reasoning skills may pursue this course. Job opportunities are available for Graduates and Post Graduates in Government as well as Private sector. Graduates may take up the following job posts- Software Engineer, Software Tester, Data Analyst, Project Manager, Network Administrator, database administrator and Application Developer.

Overall, revising the Computer Science syllabus in accordance with the NEP 2020 ensures that students receive an education that is relevant, comprehensive, and prepares them to navigate the dynamic and interconnected world of today. It equips them with the knowledge, skills, and competencies needed to contribute meaningfully to society and pursue their academic and professional goals in a rapidly changing global landscape.

Programme Specific Outcomes (PSOs)

for

M.Sc. (Computer Science)

After completing M.Sc. Computer Science Program students will be able to:

PSO1: Enrich the knowledge in the areas like Artificial Intelligence, Web Services, Cloud Computing, Paradigm of Programming language, Design and Analysis of Algorithms, Database Technologies Advanced Operating System, Mobile Technologies, Software Project Management and core computing subjects. Choose to study any one subject among recent trends in IT provided in the optional subjects.

PSO2: Students understand all dimensions of the concepts of software application and projects.

PSO3: Students understand the computer subjects with demonstration of all programming and theoretical concepts with the use of ICT.

PSO4: Developed in-house applications in terms of projects.

PSO5: Interact with IT experts & knowledge by IT visits.

PS06: Get industrial exposure through the 6 months Industrial Internship in IT industry.

PS07: To make them employable according to current demand of IT Industry and responsible citizen. PS08: Aware them to publish their work in reputed journals.

Anekant Education Society's **TuljaramChaturchand College, Baramati** (Autonomous) **Board of Studies (BOS) in Computer Science**

From 2022-23 to 2024-25

Sr.No.	Name	Designation
1.	Dr. Upendra Choudhari	Chairman
2.	Dr. Vilas Kardile	Member
3.	Mr. Abhijeet Mankar	Member
4.	Mr. Vishal Shaha	Member
5.	Mrs. Prajakta Kulkarni	Member
6.	Mrs. Asmita Bhagat	Member
7.	Mr. Rahul Shah	Member
8.	Dr. Shashikant Nakate	Member
9.	Mr. Purushottam Dixit	Member
10.	Mr. Swapnil Chemte	Member
11.	Mrs. Kalyani Londhe	Member
12.	Mrs. Poornima Gavimath	Member
13	Dr. Kavita A. Khobragade	Vice-Chancellor Nominee
14	Dr. Sudhakar Bhoite	Expert from other University
15	Dr. Suhas S. Satonkar	Expert from other University
16	Mr. Rohit Shah	Industry Expert
17	Mr. Yogesh More	Meritorious Alumni
18	Mr. Abhijeet Chopade	Student Representative
19	Miss. Rutuja Harihar	Student Representative
20	Mr. Akshada Kulkarni	Student Representative
21	Mr. Prajwal Nimbalkar	Student Representative

Anekant Education Society's

TuljaramChaturchand College of Arts, Science and Commerce, Baramati

(Autonomous)

Credit Distribution Structure for (M.Sc. (Computer Science)) Part-I (2023 Pattern)

Year	Level	Sem.	Major	Research	OJT/	RP	Cum.	
			Mandatory	Electives	Methodology (RM)	FP		Cr.
		Sem-I	COS-501-MJM: Principles of Programming Language (Credit 04) COS-502-MJM: Cryptography and Cyber Forensics (Credit 04) COS-503-MJM: Database Technologies (PR) (Credit 02) COS-504-MJM: DotNet (Basic) (PR) (Credit 02)	COS-511-MJE(A): Design and Analysis of Algorithms (Credit04)	COS-521-RM: Research Methodology in Computer Science (Credit 04)			20
Ι	6.0							
		Sem- II	COS-551-MJM: Digital Image Processing (Credit 04) COS-552-MJM: Data Mining and Data Warehousing (Credit 04) COS-553-MJM: Python Programming-I (Basic) (PR) (Credit 02) COS-554-MJM: Dot Net (Advanced) (PR) (Credit 02)	COS-561-MJE (A): Artificial Intelligence (Credit 04) OR COS-561-MJE (B):Advanced Concepts in Operating System. * 1 Credit = 15 Hr.		COS- 581- OJT/FP Credit 04		20
	Cum. (Cr.	24	8	4	4		40

Anekant Education Society's

TuljaramChaturchand College of Arts, Science and Commerce, Baramati (Autonomous)

Course Structure for (M.Sc. (Computer Science) Part-I (2023 Pattern)

Sem	Course Course Code Title of Course		Theory /	No. of	
	Туре			Pract.	Credits
		COS-501-MJM	Principles of Programming Language	Theory	4
	Major	COS-502-MJM	Cryptography and Cyber Forensics	Theory	4
	(Mandatory)	COS-503-MJM	Database Technologies	Practical	2
Ι		COS-504-MJM	DotNet (Basic)	Practical	2
	Major (Elective) COS-511-MJE(A) Design and Analysis of Algorithms		Design and Analysis of Algorithms	Theory	4
	RM	COS-521-RM	Research Methodology in Computer Science	Theory	4
			Total Credits:		20
	Major	COS-551-MJM	Digital Image Processing	Theory	4
	(Mandatory)	COS-552-MJM	Data Mining and Warehousing	Theory	4
		COS-553-MJM	Basic Python Programming	Practical	2
		COS-554-MJM	Advanced Dot Net	Practical	2
II	Major	COS-561-MJE (A)	Artificial Intelligence	Theory	4
	(Elective)	OR	OR		
		COS-561-MJE (B)	Advanced Concepts in Operating		
			System.		
	OJT/FP	COS-581-OJT/FP	On Job Training / Field Projects	Practical	4
			Total Credits:		20
		Cumulati	ive Credits of Semester – I and II		40

M.Sc. (Computer Science) – I (Semester – II)

Syllabus

(NEP-2020: 2023 Pattern)

(Wef. Academic Year 2022-2023)

AES's T. C. College (Autonomous), Baramati. CBCS Syllabus 2023 Pattern as per NEP 2020

SYLLABUS (CBCS as per NEP 2020) FOR M. Sc. (Computer Science) (w. e. f. A.Y 2023-24)

Name of the Programme	: M.Sc. Computer Science
Program Code	: PSCOS
Class	: M.Sc. (Computer Science)
Semester	: II
Course Type	: Major (Theory)
Course Name	: Digital Image Processing.
Course Code	: COS-551-MJM
No. of Lectures	: 60
No. of Credits	: 04

A. Course Objectives:

- 1. To Understand and create an ability to use current techniques, skills, and tools necessary for Computing Practice.
- 2. To provide a detailed approach towards image processing applications like enhancement, segmentation, and compression
- 3. To study the image fundamentals and mathematical transforms necessary for image process.
- 4. To study the image enhancement techniques.
- 5. To study image restoration procedures.
- 6. To study the image compression procedures.
- 7. Describe and explain basic principles of digital image processing.

B. Course Outcomes:

- After successfully completing the course students will be able to
- CO1- Review the fundamental concepts of a digital image processing system
- CO2- Develop and implement algorithms for digital image processing.

CO3-Use and Compare, various Linear filtering methods.

- CO4- Analyse images in the frequency domain using various transforms.
- CO5- Evaluate the techniques for image enhancement and image restoration.
- CO6- Categorize various compression techniques.
- CO7- Describe digital image representation, manipulation and illustrate the use of histograms.

Unit	Title and Contents	No. of
		lectures
Unit-I	Introduction to DIP	03
	Introduction to Digital Image Processing	
	The origins of Digital Image Processing	
	• Examples of Fields that use Digital Image Processing	
	Gamma-Ray Imaging	
	X-Ray Imaging	
	• Imaging in the Ultraviolet Band	
	Imaging in the Visible and Infrared Bands	

	Imaging in the Microwave Band				
	• Imaging in the Radio Band				
Unit-II	D Digital Image Fundamentals	10			
	 Motivation and Perspective, Applications 				
	 Components of Image Processing System 				
	• Fundamentals Steps in Image Processing, Image Sampling				
	and Quantization				
	• Some Basic Relationships like Neighbours, Connectivity,				
	Distance Measures between pixels.				
Unit-III	Image Enhancement in the Spatial and Frequency Domain	10			
	• Image enhancement point and neighbourhood processing,				
	Basic Gray Level Transformation, Histogram Processing,				
	Enhancement Using Arithmetic and Logic Operations,				
	Zooming				
	Basics of Spatial Filters, Smoothening and Sharpening				
	Spatial Filters				
	Combining Spatial Enhancement Methods.				
	• Introduction to Fourier Transform and the frequency				
	Domain, Smoothing and Sharpening Frequency Domain				
XX 1/ XX X	Filters, Homomorphic Filtering.	0.0			
Unit-IV	Image Restoration	08			
	Models of Image Degradation / Restoration Process, Noise				
	Models, Restoration in presence of Noise using Spatial				
	Linear Desition Inverient Degradations, Estimation of				
	• Effect Fostion-Invariant Degradations, Estimation of Degradation Function Inverse filtering Wiener filtering				
	Constraint Least Square Filtering				
	 Geometric Mean Filter and Geometric Transformations 				
Unit-V	Image Segmentation and Mornhological	7			
Cint-v	Image Processing	1			
	 Discontinuity based Segmentation similarity-based 				
	segmentation				
	• Edge linking and boundary detection				
	Threshold Region based Segmentation				
	Introduction to Morphology Dilation Frosion				
	 Some basic Morphological Algorithms 				
IInit_VI	Object Penrocontation and description	10			
	Representation Boundary Descriptors Regional	10			
	Descriptors Chain Code Structural Methods				
	 Different Application Areas of Digital Image Processing 				
	- Different Application Areas of Digital image i rocessing.				

References:

- 1) Rafael C. Gonzalez and Richard E. Woods, "Digital Image processing", 2Nd edition, Pearson Education.
- 2) David A. Forsyth, jean ponce, "computer Vision: A Modern Approach", Prentice Hall
- 3) A.K. Jain "Fundamental of Digital Image processing", PHI.
- 4) W.K Pratt, "Digital Image Processing"

NOTE: Internal Evaluation of this Subject includes Case Studies on different application areas.

NOTE: 48 LECTURES FOR CURRICULUM (TEACHING) &12 LECTURES FOR LEARNING

Course		Programme Outcomes (POs)						
Outcomes	PO1	PO6	PO7					
CO1	2	1	2	1	-	1	3	
CO2	2	1	1	2	-	1	2	
CO3	2	1	3	1	1	2	3	
CO4	1	2	3	2	-	1	2	
CO5	1	2	3	1	2	-	2	
CO6	1	2	3	1	-	1	2	
CO7	2	3	2	1	-	1	3	

Weight	1 - Partially related	2 - Moderately Related	3 - Strongly related
weight.	1 - I artially related	2 - Moderatery Related	5 - Shongry Telated

(w. e. from Academic Year 2023-24)						
Name of the Program	: M.Sc. Computer Science					
Program Code	: PSCOS					
Class	: M. Sc. (Computer Science)					
Semester	: II					
Course Type	: MJM (Theory)					
Course Name	: Data Mining and Warehousing					
Course Code	: COS-552-MJM					
No. of Lectures	: 60					
No. of Credits	: 04					

SYLLABUS (CBCS as per NEP 2020) FOR M.Sc.(Computer Science) -I Sem-II

A. Course Objectives

- 1) To make awareness of "Data Mining and Warehousing" among the students
- To introduce to scope and significance of "Data Mining and Warehousing" 2)
- 3) To provide the skill of analyse data, define and design relevant models and algorithms for estimated applications.
- 4) To study various aspects of Data, Web mining.
- 5) To develop innovative aspect towards in data mining.

B. Course Outcomes

- CO1: Understand Principles and aspects of Data Mining and Warehouse,
- CO2: Introduction data warehouse with dimensional modelling and apply OLAP operations.
- CO3: Grasp the ability Define and design appropriate data mining algorithms.
- CO4: To provide skills for solve real world problems
- CO5: Make awareness of complex data types with respect to spatial and web mining
- CO6: Promote attention in research and innovation in data mining and ware house.
- CO7: Introduce the career opportunity in Mining and warehouse.

Unit No	Title and Contents	No. of Lectures
Unit-1	 Introduction to data mining 1.1 Introduction: Data mining task, Classification (Predictive), Regression (Predictive), Change and Deviation dictation (Predictive), Clustering (Description), Summarization (Description) Dependency modelling (description) 1.2 Data Mining versus Knowledge discovery in database 1.3 Data mining issue: Mining methodology and User interaction issues, Performance Issues, Diversity of data Types 1.4 Data mining matrices 1.5 Social implication of data mining 1.6 Overview of Data mining application 	(08)
Unit-2	Introduction to data warehouse 2.1 Introduction 2.2 Architecture of data warehouse 2.3 OLAP and Data cubes 2.4-Dimensional data modelling 2.5 Machine learning 2.6 Pattern matching 2.7 Solved case studies	(06)
Unit-3	 Data mining techniques 3.1 Introduction 3.2 Frequent Item-set and association rule mining Apriori Algorithm, Use of Sampling for frequent item-set 3.3 Graph mining: Frequent subgraph mining, Tree mining, Sequence mining 	(12)
Unit -4	Classification and prediction 4.1 Introduction 4.2 Decision tree learning 4.2.1 Construction 4.2.2 Performance 4.2.3 Attribute selections 4.2.4 Issues 4.2.5 Classification and regression tree (CART) .3 Bayesian classification 4.3.1 Bayes Theorem 4.3.2 Naïve Bayesian Classifier 4.3.3 Bayesian network 4.3.4 Interface 4.3.5 Parameter learning and structure learning 4.4 Linear classification 4.4.1 Latest sequence 4.4.2 Prescription and SVM classification 4.5 Prediction	(12)

AES's T. C. College (Autonomous), Baramati. CBCS Syllabus 2023 Pattern as per NEP 2020

	4.5.1 Linear regression	
	4.5.2 non-linear regression	
TT:4 5		(09)
Unit -5	Accuracy measures	(08)
	5.1 Introduction	
	5.2 Precision	
	5.3 Recall	
	5.4 F- Measures	
	5.5 Confuse matrix	
	5.6 Cross validation	
	5.7 Bootstrap	
Unit -6	Clustering	(08)
	6.1 Introduction	
	6.2 K-means	
	6.3 Expectation maximization algorithm	
	6.4 Hierarchical clustering	
	6.5 Correlation clustering	
	6.7 Solved example	
Linit -7		(06)
0111 - 7	Brief overview of advance techniques	(00)
	7.1 Introduction	
	7.2 Active learning	
	7.3 Reinforcement learning	
	7 4 Text mining	
	7.5 Granhical model	
	7.6 Wab mining	

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques Jiawei Han & Micheline Kamber, Morgan Kaufmann Publishers, Elsevier, 2nd Edition, 2006.
- 2. Introduction to Data Mining Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson education.

REFERENCE BOOKS:

- 1. Data Mining Techniques Arun K Pujari, 2nd edition, Universities Press.
- 2. Data Warehousing in the Real-World Sam Aanhory& Dennis Murray Pearson Edn Asia.
- 3. Insight into Data Mining, K.P.Soman, S.Diwakar, V.Ajay, PHI, 2008.
- 4. Data Warehousing Fundamentals Paulraj Ponnaiah Wiley student Edition
- 5. Data Mining: Introductory and Advanced Topics by Margaret Dunham, Pearson

Course	Program Outcome (POs)							
outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	2	1	2	1	2	1	3	
CO2	2	1	1	2	1	1	2	
CO3	2	1	3	1	-	2	3	
CO4	1	2	3	2	1	1	2	
CO5	1	2	3	1	2	-	2	
CO6	1	2	3	1	-	1	2	
CO7	2	3	21	1	-	1	3	

Mapping of this course with Program outcome

Weight: 1-Partially Related

2- Moderately Related

3-Strongly Related

SYLLABUS (CBCS as per NEP 2020) FOR M. Sc. (Computer Science)-I Sem-II

Name of the Program	: M.Sc. Computer Science
Program Code	: PSCOS
Class	: M.Sc. (Computer Science)
Semester	: II
Course Type	: Major (PR)
Course Name	: Basic Python Programming
Course Code	: COS-553-MJM
No. of Lectures	: 60
No. of Credits	: 02

(w. e. f. A.Y 2023-24)

A) Course Objectives:

- 1 To understand and gain knowledge of all types of programming.
- 2 To understand and solve the functional and procedural problems.
- 3 work with common Python data types like integers, floats, strings, lists, dictionaries
- 4 understand and use variables.
- 5 use basic flow control, including for loops and conditionals.
- 6 read data from files.
- 7 Sending Mail using python programing

B) Course Outcomes:

- CO 1 To understand why Python is a useful scripting language for developers.
- CO 2 To learn how to use lists, tuples, and dictionaries in Python programs.
- CO 3 To learn how to use indexing and slicing to access data in Python programs.
- CO 4 To learn how to write functions and pass arguments in Python.
- CO 5 To learn how to build and package Python modules for reusability.
- CO 6 To learn how to read and write files in Python.

CO 7 - To learn how to design object-oriented programs with Python classes

Units	Contents and Assignment				
Unit 1	Contents -				
	• Why Python?				
	• Python Syntax compared to other programming languages				
	Python Install				
	• The print Statement				
	• Comments				
	Python Data Structures & Data Types, Dictionary				
	No. of Assignments – 4				

Unit 2	Contents -				
	String Operations in Python				
	Simple Input & Output				
	Simple Output Formatting				
	Operators in python				
	• If Statement, Loop Statement, range, Break & Continue				
	Statement				
	No. of Assignments – 4				
Unit 3	Contents -				
	Create your own functions				
	Functions Parameters				
	 Variable Arguments 				
	 Scope of a Function 				
	Function Documentations				
	No. of Assignments -4				
	100. Of Assignments - 4				
Unit 4	Contents -				
	Lambda Functions& map				
	• n Exercise with functions				
	Create a Module				
	Standard Modules				
	No. of Assignments - 4				
Unit 5	Contents -				
	Errors				
	 Exception handling with try 				
	 handling Multiple Exceptions 				
	Writing your own Exception				
	No. of Assignments - 4				
Unit 6	Contents				
Onito	Contents -				
	Price finding Modes Deading Files				
	 Reading Files Writing & Appending to Files 				
	Writing& Appending to Files Handling File Exceptions				
	The with statement				
	• I ne with statement				
T T 1 (P	No. of Assignments - 4				
Unit 7	Contents -				
	Creating Classes				
	Instance Methods				
	• Inheritance				
	No. of Assignments - 4				
Unit 8	Contents -				
	• Interface				
	Polymorphism				
	No. of Assignments - 4				

Unit 9	Contents -
	Exception Classes & Custom Exceptions
	Constructor
	No. of Assignments - 4
Unit 10	Contents -
	Class and threads
	• Multi-threading
	No. of Assignments - 4
Unit 11	Contents -
	Synchronization
	Treads Life cycle
	• use cases
	No. of Assignments - 4
Unit 12	Contents -
	How to Send Mail
	How to Send Mail with attachment
	• How to Schedule the mail
	No. of Assignments - 4

Reference Books:

- **1.** Bill Lubanovic, Introducing Python- Modern Computing in Simple Packages, O ReillyPublication.
- 2. Magnus Lie Hetland, Beginning Python: From Novice to Professional, Apress
- **3.** PaulGries, Practical Programming: An Introduction to Computer Science Using Python 3 , Pragmatic Bookshelf, 2/E 2014
- 4. Charles Dierbach, Introduction to Computer Science Using Python, Wiley Publication
- 5. John Paul Mueller, Beginning Programming with Python for Dummies Paperback

Online Links:

1. Python Tutorial for Beginner's:

https://www.w3schools.com/python/

https://www.geeksforgeeks.org/python-programming-language/

https://www.tutorialspoint.com/python/index.htm

Course	Programme Outcomes (POs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	3	2	2	2	3
CO2	3	3	3	2	2	2	3
CO3	3	3	3	2	2	2	3
CO4	3	3	3	2	2	2	3
CO5	3	3	3	2	2	2	3
CO6	3	3	3	2	2	2	3
CO7	3	3	3	2	2	2	3

Weight:

1 - Partially related

2 - Moderately Related

3 - Strongly related

SYLLABUS (CBCS as per NEP 2020) FOR M. Sc. (Computer Science) -I Sem-II

(w. e. f A.Y 2023-24)

Name of the Program	: M.Sc. Computer Science
Program Code	: PSCOS
Class	: M.Sc. (Computer Science)
Semester	: II
Course Type	: Major (PR)
Course Name	: Advanced Dot Net
Course Code	: COS-554-MJM
No. of Lectures	: 60
No. of Credits	: 02

A) Course Objectives:

- 1 To understand and gain knowledge of ASP Dot Net Core.
- 2 To understand and solve the real-life problems.
- 3 To understand ASP.Net Core Routing
- 4 To learn Razor View Engine.
- 5 To understand MVC Pattern.
- 6 Use of Bootstrap with MVC.
- 7 Learn ASP.Net MVC Web API.

B) **Course Outcomes:** On completion of the course, student will be able to

- CO 1 Understand ASP.Net Core project layout.
- CO 2 Use JSON in web application.
- CO 3 How to use routing in web application.
- CO 4 Razor syntax to create view.
- CO 5 Understand and use MVC Pattern.
- CO 6 To learn how database in MVC web application.
- CO 7 To learn how to use Web API.

Units	Contents and Assignment			
Assignment 1	Contents –			
	Environment Setup			
	New Project			
	Project Layout			
	Project JSON			
	No. of Programs - 4			

Assignment 2	Contents –
_	Configuration
	➢ Middleware
	➤ Exceptions
	> Static Files
	No. of Programs – 4
Assignment 3	Contents –
	> Autoute Routes
	> Action Results
	> Views
	No. of Programs - 4
Assignment 4	Contents –
	Setup Entity Framework
	> DB Context
	No. of Programs - 4
Assignment 5	Contents –
	 Razor View Import
	 Razor Tag Helpers
	 Razor Edit Form
	> Identity Overview
	> Authorize Attribute
	No. of Programs - 4
Assignment 6	Contents –
	MVC Pattern
	Environment Setup
	Getting Started
	➢ Life Cycle
	No. of Programs - 4
Assignment 7	Contents –
	Temp Data
	View Data
	View Bag
	No. of Programs - 4
Assignment 8	Contents – Database
	➢ Validation
	> Security
	No. of Programs - 4
Assignment 9	Contents – Database
	> Caching
	> Razor
	Data Annotations
	No. of Programs - 4

AES's T. C. College (Autonomous), Baramati. CBCS Syllabus 2023 Pattern as per NEP 2020

Assignment 10	Contents - Web API ➤ Scaffolding			
	➢ Bootstrap			
	No. of Programs - 4			
Assignment 11	Contents - Web API → Unit Testing			
	Deployment			
	Self-hosting			
	No. of Programs - 4			
Assignment 12	Contents –			
	Create simple website using ASP.Net MVC			
	 Create Online Shopping website 			
	No. of Programs - 4			

Reference Books:

- 1. Programming ASP.NET Core, Dino Esposito, PHI LEARNING PVT. LTD. | MICROSOFT
- 2. ASP.NET Core for Jobseekers, Kemal Birer, bpb publication
- **3.** Asp.Net Core Application Devlopment :: Building An Application In Four Sprints, David Paquette Simon James Chambers (Author), PHI Learning
- **4.** Learning ASP.NET Core MVC Programming , (English, Paperback, Ragupathi Mugilan T. S.)

Online Links :

1. ASP.Net MVC Tutorial for Beginner's:

https://www.w3schools.com/mvc/

https://www.geeksforgeeks.org/dotnetcore/

https://www.tutorialspoint.com/

Course	Programme Outcomes (POs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	2	2	2	3
CO2	2	3	3	2	2	2	3
CO3	3	3	3	2	2	2	2
CO4	3	2	3	2	2	2	3
CO5	3	3	3	2	2	2	3
CO6	2	3	3	2	2	2	3
CO7	3	3	3	2	2	2	3

Weight:

1 - Partially related

2 - Moderately Related

3 - Strongly related

SYLLABUS (CBCS as per NEP 2020) FOR M. Sc. (Computer Science) -I Sem-II (w. e. from Academic Year 2023-2024)

Name of the Programme	: M.Sc. Computer Science
Programme Code	: PSCOS
Class	: M.Sc. (Computer Science)
Semester	: II
Course Type	: Major (Elective) – TH
Course Name	: Artificial Intelligence
Course Code	: COS-561-MJE (A)
No. of Lectures	: 60 Hours
No. of Credits	: 04

A) Course Objectives:

- 1. To gain knowledge about AI's fundamental concepts and methods.
- 2. To understand state space and searching strategies.
- 3. To gain knowledge about different search algorithms.
- 4. To know about advanced search methods.
- 5. To learn about knowledge representation and predicate logic.
- 6. To gain knowledge about semantic networks, frames and conceptual dependency.
- B) Course Outcomes: On completion of the course, the students will be able to:
 - CO1: Understand AI's fundamental concepts and methods.
 - CO2: Explain state space and searching strategies
 - CO3: Analyze various types of standard search algorithms
 - CO4: Illustrate advanced search methods and algorithms for game playing
 - CO5: Examine knowledge representation and predicate logic
 - CO6: Understand semantic networks, frames and conceptual dependency
 - CO7: Apply Artificial Intelligence concepts for solving real life problems

Units	Title and Contents	No. of
		Lectures
Unit–I	Introduction to Artificial Intelligence	04
	• Definition of AI	
	• Future of AI	
	• Brief Discussion of major topics (Expert System, Natural	
	Language Processing, Speech and Pattern Recognition) of AI	
	• AI & Society	
	• Ethics and Privacy issues	

Unit–II	Problem, Problem Spaces & Heuristics Search Techniques	16
	• State space search	
	Production Systems	
	Search & Control Strategies	
	Problem Characteristics	
	Heuristics search technique	
	• Generate and test algorithm	
	• Hill climbing and its variations	
	• Simulated annealing	
	• Best First Search(A*algorithm)	
	• AO*algorithm	
	Constraint Satisfaction	
	Mean-Ends Analysis	
	• Game playing –Game trees, Mini-Max algorithm, Alpha-Beta	
T T. •4	pruning	10
Unit –	Knowledge Representation	12
111	• Approaches to knowledge representation	
	• Types of knowledge	
	Propositional Logic	
	• Predicate Logic (FOL)	
	Logic Programming with Prolog	
	• CNF	
	• Resolution	
T T •4	• Forward & Backward chaining system	00
Unit -	Slot & Filler Structures	08
1 V	• weak Structure	
	✓ Frames	
	Strong Structure	
	\checkmark CD (conceptual dependency)	
	✓ Script	
	CYC (CYC Motivation, CYCL)	
Unit –	Natural Language Processing	04
V	Introduction to NLP	
	• Difficulties in NLU	
	• Stages in NLP	
	NLP models	
	• Use cases of NLP	
	Sentiment Analysis	
Unit –	Neural Network	04
VI	• Types of Artificial Neural network	
	✓ Feed forward	
	✓ Feedback	
	Deep Neural Network	

References:

- 1. Eberhart, "Computational Intelligence", Elsevier, ISBN9788131217832
- 2. Nils J. Nilsson, "Artificial Intelligence: A New Synthesis", Morgan Kaufmann Publishers, ISBN9788181471901.
- 3. Elaine Rich, Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw Hill, 2017.
- 4. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Pearson Education, 2015.
- 5. Dan Patterson, "Introduction to Artificial Intelligence and Expert System", Prentice Hall

of India Pvt. Ltd., 1997.

- 6. Wolfgang Ertel, "Introduction to Artificial Intelligence", Second Edition, Springer, 2017.
- 7. Deepak Khemani, "A First Course in Artificial Intelligence", McGraw Hill Education (India) Pvt. Ltd., 2013.

Course	Programme Outcomes (POs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3				1	1	1
CO2	3						1
CO3	3						1
CO4	3			2			2
CO5	3		2	2			2
CO6	3			2			2
CO7	3	1	2	3	3	3	3

Mapping of this course with Programme Outcomes

Weight: 1 - Partially related 2 - Moderately Related 3 - Strongly related

SYLLABUS (CBCS as per NEP 2020) FOR M. Sc. (Computer Science)-I Sem-II (w. e. from June, 2023)

Name of the Program	: M.Sc. Computer Science
Program Code	: PSCOS
Class	: M.Sc. (Computer Science)
Semester	: II
Course Type	: Major Elective (TH)
Course Name	: Advanced Concepts in Operating System
Course Code	: COS-561-MJE (B)
No. of Lectures	: 60
No. of Credits	:4

Prerequisites:

- Working knowledge of C programming.
- Basic Computer Architecture concepts.
- Basic algorithms and data structure concepts.

A. Course Objectives:

Students successfully computing this course will be able to:

- 1. Teaches Advanced Operating Systems Concepts using Unix/Linux and Windows as Representative examples.
- 2. Strikes a delicate balance between theory and practical applications.
- 3. In fact, most Units start with the theory and then switches focus on how the concepts are implemented in a C program.
- 4. Describes the programming interface to the Unix/Linux system the system call interface.
- 5. Finally, it includes with an overview of Android Operating System.
- 6. This course provides an understanding of the functions of Operating Systems. It also provides an insight into functional modules of Operating Systems.
- 7. To introduce file system structures, file operations, and file organization.

B. Course Outcomes:

- CO1: Understand advanced concepts in Operating System
- CO2: Understand execution of system calls
- CO3: Explore and innovate in the field of advanced operating systems.
- CO4: Understand advanced resource management techniques, including CPU and memory allocation, process management, and I/O optimization.
- CO5: Understand the working of Threads
- CO6: Understand Kernel Structure.
- CO7: Understand advanced memory mapping techniques.

Unit	Title and Contents	No. of Lectures
Unit-1	Introduction to UNIX/Linux Kernel	04
	• Introduction of an Operating System: Objectives of Operating System and Functions of O.S.	
	• Unix as an Operating System: History and Architecture of Unix Operating	
	System	
	• Introduction to kernel, Types of kernels (monolithic, micro)	
	Concepts of Linux Programming	
	• Files, Filesystem, Processes, Users and Groups Permissions	
	Signals & Inter-process Communication	
	• System Programming:	
	 Foundation of System Programming 	
	• System calls for I/O	
	• User Perspective	
Ilm:4 0	Assumptions about Hardware	10
Unit-2	File and Directory I/O	12
	• Introduction to File and Directory	
	• Buffer Headers	
	• Structure of the Buffer Pool	
	 Scenarios for retrieval of a buffer Booding and Writing disk blocks 	
	 Reading and writing disk blocks Inc.des (Accessing inc.des and releasing inc.des) 	
	• Indues (Accessing modes and releasing modes)	
	• Structure of Regular File	
	• Directories	
	• Pipes & Dup	
	 Mounting and Unmounting of File Systems 	
	• File Sharing	
	• Atomic Operations: stat, fstat, lsat functions, file types, file access permissions	
	Ownership of new Files and Directories	
	Functions: Access, umask. chmode, fchmode	
	• Sticky Bit	
	• Functions: chown, fchown, lchown	
	• File Size	
	• File Truncation	
	• File Systems	
	Functions: link, unlink, remove, rename	
	symbolic links, Functions: symlink and readlink	
	File Times and utime Function	
	Functions: mkdir and rmdir	

	Reading Directories	
	Functions: chdir, fchdir, getcwd	
	Advanced File I/O	
	• Mapping Files into Memory	
	Advice for Normal File I/O	
	• I/O Schedulers and I/O Performance	
	• Files and their Metadata	
	• Copying and Moving files	
	Out of Band Communication	
Unit-3	Process Environment, Process Control and Process Relationships	12
	Introduction	
	Process States and transitions	
	Context of a Process	
	Process Creation	
	Process Termination	
	Process Control Block	
	Process Id	
	Obtaining the Process ID and Parent Process ID	
	Changing Size of the Process	
	> The Shell	
	Running a New Process	
	• Environment List	
	Memory layout of a C program	
	Functions: setjump() and longjump()	
	Functions: getrlimit() and setrlimit()	
	Rules for Changing the Resource Limits	
	• System Functions	
	• Launching and Waiting for a New Process	
	Race Conditions	
	Changing User IDs and Group IDs	
	• Daemons	
	Process Scheduling	
	Classification of Process	
	Yielding the Processor	
	• Threads	
	Process Priorities	
TT •/ 4	Processor Affinity	
Unit 4	Introduction to Memory Management	09
	Process Address Space	
	Pages and Memory Regions	
	Allocating Dynamic Memory	

AES's T. C. College (Autonomous), Baramati. CBCS Syllabus 2023 Pattern as per NEP 2020

	Allocating Arrays	
	Resizing Allocation	
	Freeing Dynamic Memory	
	• Alignment	
	Data Segment	
	Anonymous Memory Mappings	
	Advanced Memory Allocation	
	Debugging Memory Allocations	
	Stack-Based Allocations	
	Choosing a Memory Allocation Mechanism	
	Manipulating Memory	
	Locking and Unlocking Memory	
	Locking Limits	
	Opportunistic Allocation	
	Swapping and Demand Paging	
	Disk Management-	
	Disk Structure Disk Scheduling algorithm	
	 Disk Scheduling algorithm Numerical exercise based on Disk algorithms 	
	 Disk management 	
	 Swap Space concept and Management 	
	RAID structure	
IInit 5	Disk performance issues	06
Unit 5	• Introduction to Signal Handling	VO
	 Signal Concepts and signal Function 	
	Unreliable Signals	
	Interrupted system calls	
	 Reentrant Functions and SIGCI D semantics 	
	 Reliable-Signal Terminology ad Semantic 	
	 Functions: kill () raise () alarm () pause () 	
	 Process Blocking Signal Mask Using signromask() 	
	 Signal Sets 	
	 Retrieving Pending Signals 	
	 signation Function and Some More Functions 	
	Nonlocal Branching	
	• Advanced Signal Management	
	• Sending a Signal with a Payload	
Unit 6	Windows Thread Management	05
	• Thread Internals: Birth of a Thread and Examining a ThreadActivity	
	Worker Factory	
	Thread Scheduling	20

Overview of Windows Scheduling API
Priority Levels
Windows API Function
Relevant Tools
Real Time Priorities
Thread States
Dispatcher Database
Scheduling Scenarios
Preemption
Context Switching
Priority Boosts
Job Objects

Note: 48 hours for theory lectures and 12 hours for internal assessment and learning.

References:

1.Operating System Concepts, 8th Edition by GREG GAGNE, PETER BAER GALVIN, ABRAHAM SILBERSCHATZ

- 2. Linux System Programming, O'Reilly, by Robert Love.
- 3. Windows Internals, Microsoft Press, by Mark E. Russinovich and David A. Soloman.
- 4. The Design of the UNIX Operating System, PHI, by Maurice J. Bach.
- 5. Advanced Programming in the UNIX Environment, Addison-Wesley, by Richard Stevens **Web links:**

Kernel: <u>https://github.com/nullsecurlty/Kernel-and-Types-of</u> kernels/blob/master/Kernel%20and%20Types%20of%20kernels.md

Course	Program Outcomes (POs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO1	3	-	2	-	-	2	-	
CO2	3	1	3	-	2	2	-	
CO3	3	-	3	-	2	2	1	
CO4	3	-	3	-	-	1	-	
CO5	3	-	-	1	-	1	-	
CO6	3	-	-	-	1	-	-	
CO7	3	-	-	1	-	2	-	

Weight: 1 - Partially related 2 - Moderately Related 3 - Strongly related

Examination Pattern / Evaluation Pattern

Course	No. of Hours per	No. of Hours per	Maximum	CE	ESE
Credits	Semester	Week	Marks	40 %	60%
	Theory/Practical	Theory/Practical			
1	15 / 30	1 / 2	25	10	15
2	30 / 60	2 / 4	50	20	30
3	45 / 90	4 / 6	75	30	45
4	60 / 120	4 / 8	100	40	60

Teaching and Evaluation (for Major, Minor, AEC, VEC, IKS courses)

Teaching and Evaluation (for VSC, SEC & CC courses)

- Evaluation to be done by Internal & External Experts
- No descriptive end semester written examination
- Evaluation to be done at Department level preferably prior to commencement of Theory /Practical Examinations
- Evaluation to be done on the Skills gained by student