Anekant Education Society's Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati

Autonomous

Course Structure for B.Sc. Mathematics (w.e.f. 2022-23)

Semester	Course Code	Title of Course	No. of Credits	No. of Lectures
	USMT111	Algebra	2	36
I	USMT112	Calculus-I	2	36
	USMT113	Practical based on USMT111 and USMT112	2	48
	USMT121	Geometry	2	36
II	USMT122	Calculus-II	2	36
	USMT123	Practical based on USMT121 and USMT122	2	48

F. Y. B. Sc. Mathematics

S. Y. B. Sc. Mathematics

Semester	Course	Title of Course	No. of	No. of
	Code		Credits	Lectures
	USMT231	Calculus of Several Variables	3	48
III	USMT232	Laplace Transform & Fourier Series	3	48
	USMT233	Practical based on USMT231 and USMT232	2	48
	USMT241	Vector Calculus	3	48
IV	USMT242	Linear Algebra	3	48
	USMT243	Practical based on USMT241 and USMT242	2	48

T.Y.B.Sc Mathematics

Semester	Course Code	Title of Course	No. of	No. of
			Credits	Lectures
		Matria Success	2	40
	USM1351	Metric Spaces	3	48
V				
V V	USMT352	Real Analysis I	3	48
	LISMT353	Group Theory	3	/18
	05111333		5	-10
	USMT354	Ordinary Differential Equation	3	48
	USMT355	Number Theory	3	48
			2	40
	USM1356(A)	Operation Research	3	48
	USMT356(B)	C Programming	3	48
	USMT357	Practical based on USMT351 and	2	48
	0.5111357	USMT352		
	USMT358	Practical based on USMT353 and	2	48
		03111334		
	USMT359	Practical based on USMT355 and	2	48
		USMT356		
	USMT361	Complex Analysis	3	48
	05111501		5	-10
VI				
	USMT362	Real Analysis II	3	48
	USMT363	Ring Theory	3	48
	LIGNATOCA		2	40
	USIVI I 364	Parual Differential Equation	3	48

USMT365	Lebesgue Integration	3	48
USMT366(A)	Optimization Techniques	3	48
USMT366(B)	Python Programming	3	48
USMT367	Practical based on USMT361, USMT362, and USMT363	2	48
USMT368	Practical based on USMT364, USMT365, and USMT366	2	48
USMT369	Mathematics Project	2	48

Equivalence of the old syllabus with the new syllabus

Old Course		New Course		
MAT 1101	Algebra	USMT111	Algebra	
MAT 1102	Calculus-I	USMT112	Calculus-I	
MAT 1103	Practical based on MAT 1101 and MAT 1102	USMT113	Practical based on USMT111 and USMT112	

Academic Year 2022-23

Class: F.Y.B.Sc. (Semester – I) Course Code: USMT 111 Course: I Credit: 2

Title of the Course: Algebra No. of Lectures: 36

A) Learning Objectives:

- To provide sufficient knowledge of fundamental concepts in algebra.
- To introduce and develop Mathematical tools and how to use them for modeling, and solving problems for further studies in different fields of science.
- To develop a positive attitude towards Mathematics as an interesting and valuable subject of study.

B) Learning Outcomes:

- Students will be able to develop mathematical ideas from basic axioms.
- Students will be able to use the Euclidean algorithm and congruences to deal with big numbers and also understand analogies between the cartesian plane and the complex plane.

TOPICS/CONTENTS:

Unit 1: Sets, Relations and Functions

1.1 Sets and basic operations on sets

1.2 Relations, Equivalence relations, Equivalence classes and Partition of sets.

1.3 Functions, Types of functions, Inverse of a function, Composition of functions.

Unit 2: Divisibility theory in the integers

- 2.1 Mathematical induction: Well-Ordering Principle.
- 2.2 The division algorithm
- 2.3 The greatest common divisor
- 2.4 The Euclidean algorithm

Unit 3: Primes and theory of congruences

- 3.1 The fundamental theorem of arithmetic
- 3.2 Basic properties of congruences
- 3.3 Fermat's theorem.
- 3.4 Euler's phi-function (Definition and examples only) and Euler's theorem.

Unit 4: Complex Numbers

4.1 Sum and product

[8 Lectures]

[10 Lectures]

[10 Lectures]

[8 Lectures]

- 4.2 Basic algebraic properties
- 4.3 Moduli
- 4.4 Complex conjugate
- 4.5 Exponential form
- 4.6 Product and powers in exponential form
- 4.7 Arguments of product and quotients
- 4.8 Roots of complex numbers
- 4.9 Regions in the complex plane

Text Books:

- Ajit Kumar, S. Kumaresan and Bhaba Kumar Sarma, *A Foundation Course in Mathematics*, Narosa Publication House, 2018.
 Unit 1 Sections: 2.1 to 2.5, 3.1 to 3.6, 4.1 to 4.4.
- David M. Burton, *Elementary Number Theory*, Tata McGraw Hill, 7th Edition, 2012. Unit 2 - Sections: 1.1, 2.2 to 2.4; Unit 3 - Sections: 3.1, 4.2, 5.2, 7.2 and 7.3.
- Ruel V. Churchill, James W. Brown, *Complex Variables and Applications*, McGraw-Hill, Eighth Edition. Unit 4 - Chapter 1.

Reference Books:

- 1. S. K. Shah and S. C. Garg, Textbook of Algebra, Vikas Publishing House Pvt. Ltd.
- 2. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata McGraw Hill.
- 3. Seymour Lipschutz, Set Theory and Related Topics, Schqum's Ountline Series.
- 4. Robin Wilson, Number Theory: A very short introduction, Oxford University Press.
- 5. Sudarsan Nanda, Number Theory, Allied Publishers Pvt. Ltd.
- 6. Verity Carr, Complex Numbers: Made Simple, Made Simple Books.
- 7. Robert G. Bartle and Donald R. Sherbert, *Introduction to Real Analysis*, John Wiley & Sons.

Class: F.Y. B. Sc. (Semester- I) Course Code: USMT112 Course: II Title of Course : Calculus I Credit: 2 No. of lectures: 36

A) Learning Objectives:

- To understand the concept of convergence and divergence of a sequence
- To understand the concept of limit and continuity
- To understand the relationship between sequences and continuity

B) Learning Outcome:

- Students will apply these concepts for advanced study in Mathematics (Real Analysis, Complex Analysis, topology)
- Students will apply limit and continuity concepts in physical, chemical, and biological sciences.

Unit 1: Real Numbers

(06 Lectures)

1.1 The Algebriac and Order Properties of R: Algebraic properties of R, Order properties of R, Well-Ordering Property of N. Arithmetic mean-Geometric mean inequality, Bernoulli's inequality. (Revision: essential properties should be revised with illustrative examples)

1.2 Absolute Value and the Real Line: Absolute value function and its properties, triangle inequality and its consequences, neighbourhood of a point on real line.

1.3 The Completeness Property of R: Definitions of Upper bound, Lower bound, supermom, infimum of subsets of R, completeness property of R.

1.4 Applications of the Supremum Property: Archimedean property and its consequences, The density theorem (without proof).

Unit 2. Sequences

2.1 Sequences and Their Limits: Definition and examples of sequences of real numbers, Definition of limit of sequence and uniqueness of limit, Examples on limit of sequence.

2.2 Limits Theorems: Definition of bounded sequence, Every convergent sequence is bounded, Algebra of limits.

2.3 Monotone Sequences: Definition and examples of monotone sequences, Monotone convergence theorem and examples.

2.4 Subsequences and Bolzano -Wierstrass Theorem: Definition of subsequence and examples, Divergence criteria, Monotone Subsequence theorem (without proof), Bolzano -Wierstrass theorem (first proof).

(10 Lectures)

Unit 3. Limits

(08 lectures)

3.1 Functions and their Graphs Functions, domain and range, graphs of functions, representing a function numerically, Vertical line test, Piecewise defined functions, increasing and decreasing functions, even and odd functions symmetry, common functions

3.2 Limits of Functions: Definition of cluster point and examples, definition of limit of a function, sequential criterion for limits, divergence criteria.

3.3 Limit Theorems: Algebra of limits (proofs using sequential criterion), Squeeze theoerem.

3.4 Some extension of limit concepts: one-sided limits, infinite limits (without proof).

Unit 4: Continuity

(12 lectures)

4.1 Continuous Functions: Definition of continuous function at a point , sequential criterion for continuity, Divergence criterion, combination of continuous functions.

4.2 Continuous Functions on Intervals: Properties of continuous functions on an interval, Boundedness theorem (without proof), The minimum -maximum theorem(without proof), Location of root theorem (Without proof), Bolzano's intermediate value theorem. Continuous function maps closed bounded interval to closed bounded interval, Preservation of interval theorem.

Textbooks:

1. R.G. Bartle and D.R. Sherbert, *Introduction to Real Analysis*, John Wiley and Sons Inc, Fourth Edition.

Unit 1: Chapter 2: Sec 2.1 (2.1.1 to 2.1.13), Sec. 2.2(2.2.1 to 2.2.9), 2.3, 2.4(2.4.1, 2.4.3 to 2.4.6, 2.4.8, 2.4.9).

Unit 2: Chapter 3: Sec. 3.1(3.1.1 to 3.1.7, 3.1.10, 3.1.11), Sec. 3.2(3.2.1 to 3.2.11), Sec. 3.3(3.3.1, 3.3.4), Sec. 3.4 (3.4.1 to 3.4.3, 3.4.5 to 3.4.8).

Unit 3: Chapter 4: Sec. 4.1(4.1.1, 4.1.3 to 4.1.9), Sec. 4.2(4.2.1 to 4.2.8), Sec. 4.3 (4.3.1 to 4.3.9). Unit 4: Chapter 5: Sec. 5.1, Sec. 5.2, Sec 5.3 (5.3.1 to 5.3.5, 5.3.7 to 5.3.10).

2. J. Hass, C. Heil, and M. Weir, *Thomas Calculus*, Thirteenth Edition, Pearson Publication. **Unit 3**: Text book-2: Chapter 1: Sec. 1.1.

Reference books:

1. William F. Trench, Introduction to Real analysis, Free edition, 2010.

2. Ron Larson, Bruce Edwards, *Calculus of a single variable*, tenth edition.

3. Kenneth A. Ross, *Elementary Analysis, The Theory of Calculus*, Springer Publication, second edition.

4 Marvin L. Bittinger, David J. Ellenbogen and Scott A. Surgent *Calculus and its Applications*, Addison Wesley, tenth edition.

Class: F.Y. B. Sc. (Semester-I)

Course Code: USMT113 Course: III Title of Course: Practical Based on USMT111 & USMT112 Credit: 2

No. of lectures: 48

A) Learning Objectives:

- Improve problem-solving ability in relations, functions, congruence
- Improve problem-solving ability using properties of real numbers, limits, and sequences
- Use of ICT tools to learn Mathematics.

B) Learning Outcome:

- Students will solve problems and learn the logic behind problem-solving methods.
- Students will be able to visualize graphs and do some large calculations using Maxima Software.

Title of Experiments:

Algebra:

- 1. Problems on Sets, Relations, and Functions
- 2. Problems on Divisibility theory in the integers
- 3. Problems on Primes and the theory of congruences
- 4. Problems on Complex Numbers
- 5. Problems on Matrices
- 6. Algebra using Maxima Software

Calculus I:

- 1. Problems on Real Numbers
- 2. Problems on Sequences
- 3. Problems on Limits
- 4. Problems on Continuity
- 5. Real numbers and sequences using Maxima Software
- 6. Limits and continuity using Maxima Software