Anekant Education Society's

Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati (Autonomous)

	Semester – I				Semester – II				
Subject	Paper		Practical Paper		Paper		Practical Paper		Total
	I	II	III	IV	I	II	III	IV	
Computer Science	2	2	2	2	2	2	2	2	16
Mathematics	2	2	2		2	2	2		12
Electronics	2	2	2		2	2	2		12
Statistics	2	2	2		2	2	2		12
Physical Education									2
Democracy, Election									2
& Governance									

B.Sc. (Computer Science) Academic Year 2022 – 2023 - F.Y.B.Sc.(Computer Science) Credit Structure -

Total Number of Credits= 52(Core) + 2(Physical Education) + 2(Democracy, Election and Governance) = 56 1 Theory Credit = 18 Lectures

	Sem	ester -	- 1		Semester – II				
Subject	Paper		Practical		Paper		Practical		Total
			Pape	er			Pape	er	
	Ι	II	III	IV	I	Π		IV	
Computer Science	3	3	2	2	3	3	2	2	20
Mathematics	3	3	2		3	3	2		16
Electronics	3	3	2		3	3	2		16
English	3				3				6
Environment									2
Awareness									
Certificate Courses									2

- S.Y.B.Sc.(Computer Science) Credit Structure -

Total Number of Credits= 58(Core) + 2(Env.Awareness) + 2(Certificate Course) = 62 1 Theory Credit= 16 Lectures

- T.Y.B.Sc.(Computer Science) Credit Structure – Semester V

Subject	Theory			Practical			Total			
	I	Π	III	IV	V	VI	Lab Course	Lab Course	Lab Course	
							I			
Computer Science	3	З	3	3	3	3	2	2	2	24

- T.Y.B.Sc.(Computer Science) Credit Structure – Semester VI

Subject	Theory			Practical			Total			
	Ι	П	III	IV	V	VI	Lab	Lab	Lab	
							Course	Course	Course	
							I	Ш	Ш	
Computer Science	3	3	3	3	3	3	2	2	2	24

Total Number of Credits= 48(Core)

1 Theory Credit = 16 Lectures

B.Sc.(Computer Science): Total Credits = 56 + 62 + 48 = 166

Proposed Syllabus structure under 2022 pattern

F.Y.B.Sc.(C.S.) Semester – I

Paper Code (2019 Pattern)	Paper Title	Paper Code (Proposed 2022 Pattern)	Paper Title
CSCO 1101	Basic Programming using C	UCSCO111	Basic Programming using C
CSCO 1102	DBMS-I	UCSCO112	DBMS-I
CSCO 1103	Lab. Course I : Basic programming using C	UCSCO113	Lab. Course I : Basic programming using C
CSCO 1104	Lab. Course II : DBMS I	UCSCO114	Lab. Course II : DBMS I

F.Y.B.Sc.(C.S.) Semester – II

Paper Code (2019 Pattern)	Paper Title	Paper Code (Proposed 2022 Pattern)	Paper Title
CSCO 1201	Advanced Programming using C	UCSCO121	Advanced Programming using C
CSCO 1202	DBMS-II	UCSCO122	DBMS-II
CSCO 1203	Lab. Course I : Advanced Programming using C	UCSCO123	Lab. Course I : Advanced Programming using C
CSCO 1204	Lab. Course II : DBMS II	UCSCO124	Lab. Course II : DBMS II

Class : F.Y.B.Sc. (Computer Science)								
	Semester I	Semester II						
UCSCO111	Basic Programming using C	UCSCO121	Advanced Programming using C					
UCSCO112	DBMS-I	UCSCO122	DBMS-II					
UCSCO113	Lab. Course I : Basic	UCSCO123	Lab. Course I : Advanced					
	programming using C		Programming using C					
UCSCO114	Lab. Course II : DBMS I	UCSCO124	Lab. Course II : DBMS II					
Physical Edu	ication	Democracy,	Election & Governance					

Course Structure for F.Y.B.Sc.(Computer Science) (2022 Pattern)

Semester	Paper Code	Title of Paper	No. of	Exam.	Marks			
			Credits					
	UCSCO111	Basic Programming using C	2	I/E	60+40			
	UCSCO112	DBMS-I	2	I/E	60+40			
I	UCSCO113	Lab. Course I : Basic programming	2	I/E	60+40			
		using C						
	UCSCO114	Lab. Course II : DBMS I	2	I/E	60+40			
	UCSCO121	Advanced Programming using C	2	I/E	60+40			
	UCSCO122	DBMS-II	2	I/E	60+40			
Ш	UCSCO123	Lab. Course I : Advanced Programming	2	I/E	60+40			
		using C						
	UCSCO124	Lab. Course II : DBMS II	2	I/E	60+40			
		Physical Education	2					
		Democracy, Election & Governance	2					

Subject: Computer Science

Paper I: UCSCO111 Basic Programming Using C Course Objectives:

Students successfully completing this course will be able:

- 1. To understand and design algorithm for problem solving
- 2. To develop Problem Solving abilities using computers
- 3. To develop algorithms, flowcharts for problems
- 4. To learn block structured and procedural programming language
- 5. To develop skills for writing programs using 'C'
- 6. To test, debug and execute programs.

Course Outcomes:

On completion of this course, students will be able to :

- 1. Explore algorithmic approaches to problem solving.
- 2. Develop programs using control structures and arrays in 'C'.

	PAPER CODE : UCSCO111 PAPER – I : Basic Programming Using C	
	(Credits – 02 No. of Lectures – 36)	
	Chapter and Sub Topics	No. of Lectures
Unit – I	Problem-Solving Using Computer	
	1.1 Problem Solving	
	1.2 Algorithms & Flowcharts	
	1.3 Programming Languages	
	Machine language	5
	Assembly language	5
	High level languages	
	1.4 Converting pseudo-code to	
	programs.	
	1.5 Programming tools	
Unit – II	Introduction to C	
	2.1 History	
	2.2 Structure of a C program	3
	2.3 Application Areas	
	2.4 C Program development life cycle 2.5 Sample programs	
Unit – III	C Tokens	
	3.1 Keywords	
	3.2 Identifiers	
	3.3 Variables	
	3.4 Constants – character, integer, float, string, escape	7
	sequences	
	3.5 Data types – built-in and user defined	
	3.6 Operators and Expressions Operator types (arithmetic,	
	relational, logical, assignment, bitwise, conditional, other	
	operators), precedence and associativity rules.	
Unit – IV	Control Structures	
	4.1 Decision making structures if, if-else, switch-case	
	4.2 Loop Control structures While, do-while, for	7
	4.3 Jumping Statements break, continue and goto	
	4.4 Nested structures	
Unit – V	Functions in C	8
	5.1 What is a function	0

	5.2 Advantages of Functions	
	5.3 Standard library functions	
	5.4 User defined functions :Declaration, definition, function	
	call, parameter passing (by value), return keyword	
	5.5 Scope of variables, storage classes	
	5.6 Recursion	
Unit – VI	Arrays	
	6.1 Array Concept	
	6.2 Types – one, two and multidimensional	
	6.3 Array Operations - declaration, Initialization,	6
	accessing array elements	
	6.4 Passing arrays to functions	
	6.5 Array Applications	
	References:	
1. Yasha	avant Kanetkar : Let Us C 7 th Edition, PBP Publications	
2. E Bal	aguruswamy : Programming in ANSI C 7th Edition, Tata Mc-G	raw Hill Publishing
	rdNew Delhi	C
	W. Kernighan and Dennis M. Ritchie : The C Programmin	ng Language 2 nd
	0	lig Language 2
	on, Prentice Hall Publication	
	Complete Reference to C, Herbert Schildt	
5. Probl	em Solving with C, Harrow	
6. Progr	amming in C, A Practical Approach, Ajay Mittal, Pearson	

Class	: F.Y. B. Sc. (Computer	r Science) (Semester- I)
Subject	: Computer Science	Paper Code: UCSCO112
Title of P	aper: DBMS-I	Paper: II
Credit: 2		No. of lectures: 36

Learning objective: Students successfully completing this course will be able to:

- Understand design and implementation of a database system.
- Study the physical, logical database designs and database modeling.
- Understanding and development for essential DBMS concepts.
- Understand creations, manipulation and querying of data in databases.

Learning Outcomes:

- Master the basics of database concepts and database management system
- Model an application's data requirements using conceptual modeling tools like ER model, relational model.
- Write SQL commands to create tables, insert, update, delete and querying data.

Units	Title & Content	No. Of lecture
Unit I	 1. Introduction to File organization & DBMS 1.1 Introduction 1.2 Types of file organization 1.3 File system Vs DBMS 1.4 Data models 1.5 Levels of abstraction 1.6 Data independence 1.7 Structure of DBMS 1.8 Users of DBMS 1.9 Advantages of DBMS 	04
Unit II	 2. Conceptual Design (E-R model) 2.1 Overview of DB design 2.2 ER data model (entities, attributes, entity sets, relations, relationship sets) 2.3 Additional constraints (Key constraints, Mapping constraints) 2.4 Conceptual design using ER modelling 2.4 Case studies 	10
Unit III	 3. Relational data model 3.1 Structure of Relational Databases (concepts of a table, a row, a relation, a Tuple, and a key in a relational database) 3.2 Conversion of ER to Relational model 3.3. Integrity constraints (primary key, referential integrity, unique constraint, Null constraint, Check constraint) 	04
Unit IV	 4. Relational algebra 4.1 Preliminaries 4.2 Relational algebra (selection, projection set operations, renaming, joins, division) 4.3 Problems. 	04
Unit V	 5. Introduction to SQL 5.1 Introduction 5.2 Basic structure 5.3 Set operations 5.4 Aggregate functions 5.5 Null values 5.6 PL/PgSqL: Data types, Language structure 	08

	6. Operations with SQL	
	6.1 Nested Subqueries	
	6.2 Modifications to Database	
Unit VI	6.3 DDL and DML commands with examples	06
	6.4 SQL mechanisms for joining relations (inner joins, outer joins	
	and their types)	
	6.5 Examples on SQL (case studies)	

References

- 1. Shamkant B. Navathe, Ramez Elmasri, Database Systems, ISBN:9780132144988,PEARSON HIGHER EDUCATION
- 2. Richard Stones, Neil Matthew, Beginning Databases with PostgreSQL: From Novice to Professional, ISBN:9781590594780, Apress
- 3. Korry Douglas, PostgreSQL, ISBN:9780672327568, Sams
- 4. JohnWorsley, Joshua Drake , Practical PostgreSQL(BCD),ISBN:9788173663925 Shroff/O'reilly
- 5. Joshua D. Drake, John C Worsley, Practical Postgresql, (O'Reilly publications)
- 6. Bipin C Desai , "An introduction to Database systems" , Galgotia Publications
- 7. Henrey Korth, Sudarshan, Silberschatz "Database System Concepts" (4th Ed), McGraw Hill,.

Paper III: UCSCO113 Lab Course I : Basic Programming Using C <u>Course Objectives:</u>

Students successfully completing this course will be able:

- 1. Design and implement a 'C' programs for simple problems
- 2. Understand appropriate use of data types and array structures
- 3. Understand use of appropriate control structures

Course Outcomes:

On completion of this course, students will be able to :

- 1. Formulate pseudocodes and flowchart for computational problems.
- 2. Write, debug and execute simple programs in 'C'.

Guidelines:

Lab Book: The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Submission: Problem Solving Assignments: The problem solving assignments are to be submitted by the student in the form of a journal containing individual assignment sheets. Each assignment includes the Assignment Title, Problem statement, Date of submission, Assessment date, Assessment grade and instructors sign.

Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student.

Operating Environment:

For 'C' Programming:

- Turbo C++ 4.0 Windows 7 Windows 8 64Bit Version

PAPER CODE : UCSCO113 PAPER – III : Lab Course I : Basic Programming Using C		
(Credits – 02 No. of Practical's – 10)		
	Title of Experiment/ Practical	
1	Assignment to demonstrate use of data types, simple operators & expressions.	
2	Assignment to demonstrate decision making statements (if and if-else, nested	
2	structures)	
3	Assignment to demonstrate decision making statements (switch - case)	
4	Assignment to demonstrate use of simple loops	
5	Assignment to demonstrate use of nested loops	
6	Assignment to demonstrate menu driven programs.	
7	Assignment to demonstrate writing C programs in modular way (use of user	
/	defined functions)	
8	Assignment to demonstrate recursive functions.	
9	Assignment to demonstrate use of arrays (1-d arrays) and functions	
10	Assignment to demonstrate use of arrays (2-d arrays) and functions	

Class: F.Y. B. Sc. (Comp. Sci.) Practical Lab-I Course (Semester- I)

Subject: Computer Science Title of Paper: Lab Course on DBMS-I Credit: 2 Paper Code: UCSCO114 Paper : II No. of Practical's: 10

Learning objective: Students successfully completing this course will be able to:

- Understand design and implementation of a database system.
- Study the physical, logical database designs and database modeling.
- Understanding and development for essential DBMS concepts.
- Understand creations, manipulation and querying of data in databases.

Learning Outcomes:

- Master the basics of database concepts and database management system
- Write, debug, and execute SQL Queries using PostgreSQL.
- Model an application's data requirements using conceptual modeling tools like ER model, relational model.
- Write SQL commands to create tables, insert, update, delete and querying data.

Sr.	Title of Experiment/ Practical
No.	
1	Create simple tables, with only the primary key Constraint
2	Create more than one table with integrity constraint
3	Create more than one table, with referential integrity constraint.
4	Drop a table from database, Alter the table.
5	Insert/Update/Delete statements.
6	Query for the tables using simple form of Select Statement
7	Query solving for table operations (Aggregate function)
8	Nested Query solving for table operations (Union, Intersect, Except)
9	Nested Query solving for table operations (Set membership, Cardinality,
7	Comparison)
10	Small Case Studies.

Paper I: UCSCO121 Advanced Programming Using C

Prerequisites:

- 1. Problem Solving tools like algorithms, flowcharts and pseudocodes.
- 2. Basic knowledge of 'C' language.

Course Objectives:

Students successfully completing this course will be able:

- 1. To study advanced concepts of programming using 'C' language.
- 2. To understand complex data types like structure and union.
- 3. To work with files.
- 4. To understand and develop basics of Graphics Programming

Course Outcomes:

On completion of this course, students will be able to :

- 1. Develop programs using control structures, pointers, strings, structures and files in 'C'.
- 2. Design and develop solutions to real world problems using C.

PAPER CODE : UCSCO121 PAPER – I : Advanced Programming Using C (Credits – 02 No. of Lectures – 36)		
	Chapter and Sub Topics	No. of Lectures
Unit – I	 Pointers 1.1 Pointer declaration, initialization 1.2 Dereferencing pointers 1.3 Pointer arithmetic 1.4 Pointer to pointer 1.5 Arrays and pointers 1.6 Functions and pointers – passing pointers to functions, function returning pointers 1.7 Dynamic memory allocation 	8
Unit – II	Strings2.1 Declaration and initialization, format specifiers2.2 Standard library functions2.3 Strings and pointers	6

	2.4 Array of strings	
	2.5 Command Line Arguments	
Unit – III	Structures and Unions	
Oline III	3.1 Creating structures	
	3.2 Accessing structure members (dot Operator)	
	3.3 Structure initialization	
	3.4 Typedef	
	3.5 Array of structures	
	3.6 Passing structures to functions	10
	3.7 Nested structures	
	3.8 Pointers and structures	
	3.9 Self referential structure	
	3.10 Unions	
	3.11 Difference between structures and unions	
Unit – IV	File Handling	
	4.1 Streams	
	4.2 Types of Files	6
	4.3 Operations on files	_
	4.4 Random access to files	
Unit – V	C Preprocessor	
	4.1 Format of Preprocessor directive	
	4.2 File Inclusion directive	2
	4.3 Macro substitution, nested macro, argumented macro	
	4.4 Macros VS Functions	
Unit – VI	Graphics programming using C	
	6.1 Graphics driver and mode	4
	6.2 Drawing simple graphical objects–line, circle, rectangle etc.	4
	6.3 Outputting text, curves & Polygons	
	References:	
1. Yash	avant Kanetkar : Let Us C 7 th Edition, PBP Publications	
2. E Ba	laguruswamy : Programming in ANSI C 7 th Edition, Tata Mc-Graw H	ill Publishing
	LtdNew Delhi	6
		nguaga 2nd
	3. Brian W. Kernighan and Dennis M. Ritchie : The C Programming Language 2 nd	
Edition, Prentice Hall Publication		
4. The	4. The Complete Reference to C, Herbert Schildt	
5. Prob	lem Solving with C, Harrow	
	ramming in C, A Practical Approach, Ajay Mittal, Pearson	
0. 1108		

Class: F.Y. B. Sc. (Computer Science) (Semester- II)

Subject: Computer Science Title of Paper: DBMS-II Credit: 2 Paper Code: UCSCO122 Paper: II No. of lectures: 36

Prerequisites: Knowledge of DBMS

Learning Objectives:-Students successfully completing this course will be able to:

Understand fundamental concepts of RDBMS (PL/PgSQL)

□ Understand data security and its importance.

□ Understand client server architecture.

Learning Outcomes:

 \Box Develop the database design by normalization.

□ Knowing functional dependencies and design of the relational database.

 \Box Design concept of Transaction and Query processing.

Unit	Title & Contents	No.	of
		lectur	es
Unit I	1. Relational Database Design	12	
	1.1 Preliminaries		
	1.2 Normalization (1NF,2NF,3NF,BCNF,4NF, 5 NF)		
	1.3 Controlling the program flow, conditional statements, loops		
	1.4 Handling errors and exceptions, Cursors		
	1.5 Views, Stored Functions, Stored Procedures, Triggers, Index		
Unit II	2 Transaction Concepts and concurrency control	10	
	2.1 Transaction, properties of transaction, state of the transaction.		
	2.2 Executing transactions concurrently associated problem in concurrent		
	execution.		
	2.3 Schedules, types of schedules, Serializability, precedence graph for		
	Serializability.		
	2.4 Ensuring Serializability by locks, different lock modes, 2PL and its		
	variations.		
	2.5Basic timestamp method for concurrency, Thomas Write Rule.		
	2.6 Locks with multiple granularity, dynamic database concurrency (Phantom		
	Problem).		
	2.7 Timestamps versus locking.		
	2.8 Deadlock handling methods		
	2.8.1 Detection and Recovery (Wait for graph).		
	2.8.2 Prevention algorithms (Wound-wait, Wait-die)		
Unit III	3 Database Integrity and Security Concepts	6	
	3.1 Domain constraints		
	3.2 Referential Integrity		
	3.3 Introduction to database security concepts		
	3.4 Methods for database security		
	3.4.1Discretionary access control method		
	3.4.2Mandatory access control and role base access control for multilevel		
	security.		

	3.5 Use of views in security enforcement.	
	3.6 Overview of encryption technique for security.	
	3.7 Statistical database security.	
Unit IV	4 Crash Recovery	4
	4.1 Failure classification	
	4.2 Recovery concepts	
	4.3 Log base recovery techniques (Deferred and Immediate update)	
	4.4 Checkpoints	
	4.5 Recovery with concurrent transactions (Rollback, checkpoints, commit)	
	4.6 Database backup and recovery from catastrophic failure.	
	4.7 DCL Command implementation with example (Grant & Revoke	
	Command)	
Unit V	5. Client-Server Technology	4
	5.1 Describe client-server computing.	
	5.2 Evolution of Client - Server information systems.	
	5.3 Client – Server Architecture benefits.	
	5.4 Client Server Architecture - Components, Principles, Client	
	Components, Communication middleware components, Database middleware	
	components, Client Server Databases	

References:-

- 1. Elmasri and Navathe, Fundamentals of Database Systems (4th Ed)
- 2. Henrey Korth, Sudarshan, Silberschatz, Database System Concepts (4th Ed)
- 3. Practical PostgreSQL O"REILLY
- 4. Richard Stones , Neil Matthew, Beginning Databases with PostgreSQL, From Novice to Professional, 2ndEdition, Apress

Paper III: UCSCO123 Lab Course I : Advanced Programming Using C Course Objectives:

Students successfully completing this course will be able:

- 1. Design and implement a real world computational problems using Advanced 'C' programming concepts.
- 2. Understand appropriate use of data types like structures, Union
- 3. Understand use of Files

Course Outcomes:

On completion of this course, students will be able to:

1. Write, debug and execute programs using advanced concepts in 'C'.

Guidelines:

Lab Book: The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Submission: Problem Solving Assignments: The problem solving assignments are to be submitted by the student in the form of a journal containing individual assignment sheets. Each assignment includes the Assignment Title, Problem statement, Date of submission, Assessment date, Assessment grade and instructors sign.

Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student.

Operating Environment:

For 'C' Programming:

- Turbo C++ 4.0 Windows 7 Windows 8 64Bit Version

PAPER CODE : UCSCO123 PAPER – III : Lab Course I : Advanced Programming Using C (Credits – 02 No. of Practical's – 10)	
	Title of Experiment/ Practical
1	Assignment to demonstrate use of pointers.
2	Assignment to demonstrate concept of strings (string & pointers)
3	Assignment to demonstrate array of strings.
4	Assignment to demonstrate use of bitwise operators.
5	Assignment to demonstrate structures and unions.
6	Assignment to demonstrate structures (using array and functions).
7	Assignment to demonstrate command line arguments and preprocessor directives.
8	Assignment to demonstrate file handling (text files & binary files)
9	Assignment to demonstrate graphics programming.
10	C Programming – Case study

Class: F.Y. B. Sc. (Comp. Sci.) Practical Lab-II Course (Semester- II)

Subject: Computer Science Title of Paper: Lab Course on DBMS-II Credit: 2 Paper Code: UCSCO124 Paper : II No. of Practical's: 10

Learning objective: Students successfully completing this course will be able to:

- Understand design and implementation of a database system.
- Study the physical, logical database designs and database modeling.
- Understanding and development for essential RDBMS concepts.
- Understand creations, manipulation and querying of data in databases.

Learning Outcomes:

- Outline the fundamental concepts of relational Database Management System.
- Perform advanced Relational database Management Operations.
- Validate the queries by implementing error and exception handling techniques.
- Write queries, functions, triggers, cursor, and views using SQL and PL/SQL.

Sr. No.	Title of Experiment/ Practical
1	Simple Queries
2	Nested Queries, using aggregate functions
3	Queries using Views
4	Stored Function
5	Cursors
6	Exception Handling
7	Triggers
8	Case Study