SYLLABUS (CBCS) FOR S. Y. B. Sc.(Computer Science) MATHEMATICS (w.e.f. June, 2020)

Academic Year 2020-2021

Class	: S.Y. B. S	: S.Y. B. S.c (Computer Science) (Semester- I)			
Paper Code	e : CSMT21	101			
Paper	: I	Title of Paper:	Applied Algebra		
Credit	: 2	No. of lectures	s: 48		
1.General Ve	ctor Spaces :		[14 lectures]		
(1) Introduction	on.				
(2) Real Vecto	or Spaces.				
(3) Euclidean	n-Space.				
(4) Subspaces	of a Vector S	pace.			
(5) Linear Co	mbination and	Linear Span.			
(6) Linear Ind	ependence.	-			
(7) Basis and	Dimension.				
(8) Row Spac	e, Column Sp	ace, Null Space.			
(9) Rank and	Nullity.				
2. Eigen Valu	ies and Eigen	Vectors:	[12 lectures]		
(1) Introduction	on.				
(2) Eigen Val	ues and Eigen	Vectors.			
(3) Diagonaliz	zation.				
(4) Quadratic	Forms.				
3. Linear Tra	insformation	s:	[16 lectures]		
(1) Introduction	on.				
(2) Linear Tra	insformation.				
(3) Kernel and	l Range of a I	Linear Transformation.			
(4) Inverse Li	near Transfor	mation.			
(5) Matrix of	General Linea	r Transformation.			
4. Inner Prod	luct Spaces :		[6 lectures]		
(1) Inner Prod	lucts.				
(2) Angle and	Orthogonality	y in Inner Product Spaces.			
(3) Gram-Sch	midt Process.				
Text Books:					
H. An	ton and C. Ro	rres, Elementary Linear Algebra w	ith Applications, Eleventh Ed.		
Wiley	, (1994).				
Sectio	ns : 4.1 to 4.8	, 5.1 to 5.2, 7.3, 6.1 to 6.3, 8.1 to 8	.4		

Reference Books:

(1) M. Artin, Algebra, Prentice Hall of India , New Delhi, (1994).

(2) K. Hoffmann and R. Kunze Linear Algebra, Second Ed. Prentice Hall of India New Delhi, (1998).

(3) S. Lang, Introduction to Linear Algebra, Second Ed. Springer-Verlag, New Yark,

(1986).

(4) A. Ramchandra Rao and P. Bhimasankaran, Linear Algebra, Tata McGraw Hill, New Delhi (1994).

(5) Discrete Mathematics Structures (sixth edition), Kloman, Busby and Ross. PHI.

(6) G. Strang, Linear Algebra and its Applications. Third Ed. Harcourt Brace Jovanovich, Orlando, (1988).

(7) S. Kumaresan , Linear Algebra: A Geometric Approach, Prentice Hall of India, New Delhi,

1999.

Class: S.Y. B. S.c(Computer Science) (Semester- I)Paper Code: CSMT2103Title of Paper: PracticalPaper: IIITitle of Paper: Practical

- 1. Intoduction of Scilab with some basic commands.
- 2. Basic operations on matrices.
- 3. Regula-Falsi Method and Newton raphson Method.
- 4. Eigen values & Eigen vectors ,Diagonalization.
- 5. Newton's forward interpolation formula and Newton's backward interpolation formula
- 6. Newton's backward interpolation formula and Newton's divided difference formula.
- 7. Numerical Integration by Trapezoidal Method , Numerical Integration by Simpson's (1/3)rd rule and Numerical Integration by Simpson's (3/8)th rule.
- 8. Euler's Method and Runge-kutta Method.
- 9. Inner Product Spaces.

Class	: S.Y. B. S.c(Computer Science) (Semester- I)			
Paper Co	de: CSMT2102			
Paper	: II	Title of Paper: Numerical Techniques		
Credit	: 2	No. of lectures: 48		

1.Errors:	[03]
1) Accuracy of numbers.	
2) Errors.	
2. Algebraic and Transcendental Equation.	[06]
1) False Position Method.	
2) Newton Raphson Method.	

3. Calculus of Finite Differences:	
1) Differences .	
i. Forward Difference	
ii. Backward Differences	
iii. Central Differences	
iv. Other Differences	
v. Properties of Operators	
vi. Relation between Operators.	
2) Fundamental Theorem of Differences of Polynomial.(without proof)	
3) Estimation of Error by Difference Table.	
4) Technique to determine the Missing Term.	
4. Interpolation with Equal Interval.	[10]
1) Newton's Gregory Formula for Forward Interpolation.	
2) Newton's Gregory Formula for Backward Interpolation.	
3) Central Difference Formulae.	
i. Gauss Forward Difference Formula.	
ii. Gauss Backward Difference Formula.	
iii. Bessel's Interpolation Formula.	
5. Interpolation with Unequal Interval.	[08]
1) Lagrange's Interpolation Formula.	
2) Error in Lagrange's Interpolation Formula.	
3) Divided Difference.	
4) Newton's Divided Difference Formula.	
6. Numerical Integration .	[05]
1) General Quadrature Formula.	
2) Trapezoidal Rule.	
3) Simpson's One – Third Rule.	
4) Simpson's Three –Eight Rule.	
7. Numerical Solution of Ordinary Differential Equation.	[06]
1) Euler's Method.	
2) Rung -Kutta Method.	

Text Book:

S.S Sastry, Introductory Methods of Numerical Analysis, 5th edition, Prentice Hall of India, 1999

Sections: 1.3, 1.4, 2.3, 2.5, 3.3, 3.5, 3.6, 3.7(3.7.1, 3.7.3), 3.10, 3.9(3.9.1) 6.4, 8.4, 8.5

Reference Books:

- 1) H.C. Saxena; Finite differences and Numerical Analysis, S. Chand And Company.
- 2) K.E. Atkinson ; An Introduction to Numerical Analysis, Wiley Publications.
- 3) Balguruswamy; Numerical Analysis.
- 4) A textbook of Computer Based Numerical and Statistical Techniques, by A.K.Jaiswal and Anju Khandelwal. New Age International Publichers.

Class: S.Y. B. Sc.(Computer Science) (Semester- II)Paper Code:CSMT2201Paper: ITitle of Paper: Computational Geometry

Credit

No. of lectures: 48

1. Two Dimensional Transformation :

- 1) Introduction.
- 2) Representation of Points.

: 2

- 3) Transformations and matrices.
- 4) Transformations of Points.
- 5) Transformations of straight lines.
- 6) Midpoint transformation.
- 7) Transformation of parallel lines.
- 8) Transformation of Intersecting lines.
- 9) Transformation: rotation, reflection, scaling, shearing.
- 10) Combined transformation.
- 11) Transformation of Unit square.
- 12) Solid body transformation.
- 13) Transformation and Homogeneous co-ordinates , Translation,
- 14) Rotation about an arbitrary point.
- 15) Reflection through an arbitrary line.
- 16) Projection a geometric Interpretation of homogeneous co-ordinates.
- 17) Overall Scaling.

2. Three Dimensional transformations :

- 1) Introduction.
- 2) Three dimensional Scaling, shearing, rotation, reflection, translation.
- 3) Multiple transformations.
- 4) Rotation about an axis parallel to co-ordinate axes, an arbitrary axis in space.
- 5) Reflection through co-ordinate planes , planes parallel to co-ordinate planes , arbitrary planes .
- 6) Affine and perspective transformations.
- 7) Orthographic projections.
- 8) Axonometric projections.
- 9) Oblique projections.
- 10) Single point perspective transformations.

3. Plane curves :

- 1) Introduction.
- 2) Curve representation.
- 3) Non parametric curves.
- 4) Parametric curves.
- 5) Parametric representation of circle and generation of circle.
- 6) Parametric representation of ellipse and generation of ellipse.
- 7) Parametric representation of parabola and generation of parabolic Segment.
- 8) Parametric representation of hyperbola and generation of hyperbolic Segment

[16]

[10]

[16]

4. Space of 1) Bezie (up t Text Book:	eurves: er curves – Introdu o n=3), equation o	ction, definition, properties (without proof in matrix form(up to n=3).	[06] oof), curve fitting
D. F	. Rogers, J.A. Ada	ms, Mathematical elements for Computer	graphics,
	Graw Hill Intnl Ed	ition.	
1) M 2) So	Gooks: I. E. Mortenson, Co Chaum Series, Com	omputer Graphics Handbook, Industrial P puter Graphics.	Pres Inc
Class Paper Co	: S.Y. B. Sc. de:CSMT2202	.(Computer Science) (Semester- II))
Paper	: II	Title of Paper: Operation	on Research
Credit	: 2	No. of lectures: 48	
1.Modeling	with Linear Progra	mming	[06]
1) Two-	Variable LP Mode	1.	
2) Graph	nical LP Solution		
3) Linea	r Programming Ap	pplications	
2. The Simp	olex Method		[10]
1) LP M	odel in Equation f	orm	
2) Trans	ition from Graphic	cal to Algebraic Solution	
3) The S	implex Method		
4) Speci	al cases in Simpley	k Method	[00]
5. Duality	tion of the Dual n	and losse	[08]
$\frac{1}{2} Defin$	luon of the Dual p	roblem	
2) Prima 4 Transpo	rtation Model and	S d its Variants	[12]
1) Defin	ition of the Transn	units variants	
2) The T	ransportation Alg	orithm	
$\begin{array}{c} 2) \text{ The } 1 \\ 3) \text{ The } 4 \end{array}$	ssignment Model	,oritimi	
5 Decision	Analysis and Ga	mes	[12]
1) Decis	sion Under Uncert	ainty	
2) Optir	nal solution of two) person zero sum games	
3) Solut	tion of mixed strate	egy games.	
Text Book:		-8, 8	
Oper Secti	ration Research (A ions : 2.1, 2.2, 2.4.	n Introduction) Ninth Edition, by Hamdy 2, 3.1, 3.2, 3.3, 3.5, 4.1, 4.2, 5.1, 5.3, 5.4,	A. Taha. 15.3, 15.4
Reference H	Books:		
1) O	peration Research	by S.D.Sharma.	
2) Oj	peration Research	by J.K.Sharma.	

Class: S.Y. B. S.c(Computer Science) (Semester- I)Paper Code:CSMT2203Paper: IIITitle of Paper: Practical

- 1. Sorting a set of points w.r.t. a line and Sorting a set of points w.r.t. a rectangle.
- 2. Find a pair of points with least mutual distance from the given set and Find a pair of points with farthest mutual distance from the given set.
- 3. Solution of L.P.P. by simplex method.
- 4. 2-D transformation.
- 5. Transportation Problem
- 6. Assignment Problem.
- 7. 3-D transformation.
- 8. Generation of uniformly n-points on standard circle
- 9. Sort given set of points w.r.t. rectangular box.