Anekant Education Society's Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati

Autonomous

B.Sc.(Computer Science) Academic Year 2019-2020

- F.Y.B.Sc. (Computer Science) Credit Structure -

Subject	Semester I								
	Ра	per	er Practical Paper		Paper		Practical Paper		Total
	Ι	II	III	IV	I	II	III	IV	
Computer Science	2	2	2	Grade	2	2	2	Grade	12
Mathematics	2	2	2		2	2	2		12
Electronics	2	2	2		2	2	2		12
Statistics	2	2	2		2	2	2		12
Physical Education									2

Total Number of Credits = 48(Core) + 2 (Physical Education) = 50

1 Theory Credit = 18 Lectures

Subject		Sem	ester	ester I		Semester II			
	Paper		Practical		Paper		Practical		Total
	•	п							
Computer Science	י 2	יי ר	2	Grade	י ר	יי ג	2	Grade	16
Mathematica	3 3	2	2		5 - 1	5 0	2		10
iviathematics	3	3	Z		3	3	2		10
Electronics	3	3	2		3	3	2		16
English	3				3				6
Evs.									2
Certificate	2				2			4	
Courses									

- S.Y.B.Sc. (Computer Science) Credit Structure -

Total Number of Credits = 54 (Core) + 2 (EVS) + 4 (Certificate Courses) = 60

1 Theory Credit = 16 Lectures

- T.Y.B.Sc. (Computer Science) Credit Structure -

Subject	Theory							Total		
	I	11		IV	V	VI	Lab Course I	Lab Course II	Lab Course III	
Computer Science	3	3	3	3	3	3	2	2	2	24
Certificate Courses		2								2

Semester V

- T.Y.B.Sc. (Computer Science) Credit Structure -

Semester VI

Subject	Theory							Total		
	I	II	111	IV	V	VI	Lab Course I	Lab Course II	Lab Course III	
Computer Science	3	3	3	3	3	3	2	2	2	24

Total Number of Credits = 48 (Core) + 2 (Certificate Courses) = 50

1 Theory Credit = 16 Lectures

B.Sc. (Computer Science): Total credits = 50 + 60 + 50 = 160

Class :F.Y.B.Sc. (Computer Science)							
	Semester I	Semester II					
CSCO 1101	Basic Programming using C	CSCO 1201	Advanced Programming using C				
CSCO1102	DBMS-I	CSCO 1202	DBMS-II				
CSCO1103	Lab Course I : Basics of C	CSCO 1203	Lab Course I : Advanced C				
CSCO1104	Lab Course II : DBMS I	CSCO1204	Lab Course II : DBMS II				
Physical Education							

Class :S.Y.B.Sc. (Computer Science)							
	Semester III	Semester IV					
CSCO 2301	Data Structures using C	CSCO2401	Object Oriented Concepts using Java				
CSCO2302	Introduction to Web Technology	CSCO2402	Software Engineering				
CSCO2303	Lab Course I : Based On	CSCO2403	Lab Course I: Based On 2401				
	CSCO2301						
CSCO2304	Lab Course II: based On	CSCO2404	Lab Course II : Based On CSCO2402				
	CSCO2302		with Mini Project				
	Certificate Course I		Certificate Course II				
Environment Science (EVS)							

	Class :T.Y.B.Sc.	(Computer Science)			
	Semester V	Semester VI			
CSCO3501	System Programming &Operating System	CSCO3601	Advanced Operating System		
CSCO 3502	Theoretical Computer Science	CSCO3602	Compiler Construction		
CSCO3503	Computer Networks - I	CSCO3603	Computer Networks - II		
CSCO3504	Web Development – I	CSCO3604	Web Development-II		
CSCO3505	Advanced Programming in Java	CSCO3605	Advanced Java Technologies – Frameworks		
CSCO3506	Object Oriented Software Engineering	CSCO3606	Software Metrics & Project Management		
CSCO3507	Lab Course I: Based on CSCO3501	CSCO3607	Lab Course I: Based on CSCO3601		
CSCO3508	Lab Course II: Based on CSCO3505	CSCO3608	Lab Course II: Based on CSCO3605 & Mini Project using JAVA		
CSCO3509	Lab Course III: Based on CSCO3504	CSCO3609	Lab Course III: Based on CSCO3604 & Mini Project using PHP.		
	Certificate Course III				

Course Structure for F. Y. B. Sc. (Computer Science)
Subject: Computer Science

Sem	Paper Code	Title of Paper	No. of Credits	Exam	Marks
	CSCO1101	Basic Programming using C	2	I/E	60 + 40
Ι	CSCO 1102	DBMS – I	2	I/E	60 + 40
	CSCO1103	Lab Course – I Basics on C	2	I/E	60 + 40
	CSCO1104	Lab Course – II Based on DBMS I	Grade	I/E	60 +40
	CSCO 1201	Advanced Programming using C	2	I/E	60 + 40
II	CSCO 1202	DBMS – II	2	I/E	60 + 40
	CSCO 1203	Lab Course – I Advanced C Prog.	2	I/E	60 + 40
	CSCO1204	Lab Course- II DBMS II (PL/PgSql)	Grade	I/E	60 + 40
		Physical Education	2		

SYLLABUS (CBCS) FOR F. Y. B. Sc. (Computer Science) (w.e.f from June, 2019) Academic Year 2019-2020

: F.Y. B. Sc.(Computer Science) (Semester- I) Class

: Computer Science Subject

Title of Paper: Basic Programming Using C Paper : I Credit: 2

No. of lectures: 36

Paper Code : CSCO1101

Learning Objectives: Students successfully completing this course will be able:

- 1. To understand and design algorithm for problem solving
- 2. To develop Problem Solving abilities using computers
- 3. To develop skills for writing programs using 'C'

Learning Outcome: Problem solving and programming capability.

Chapter	Topic Contents	No. of Lectures
Chapter Unit – I	Topic ContentsProblem-Solving Using Computer1.1 Problem Solving1.2 Algorithms & Flowcharts (More Problems covered)1.3. Programming Languages Machine language High level languages	No. of Lectures
Unit – II	Introduction to C 2.1 History 2.2 Structure of a C program 2.3 Application Areas 2.4 C Program development life cycle 2.5 Sample programs	2
Unit – III	C Tokens 3.1 Keywords 3.2 Identifiers 3.3 Variables 3.4 Constants – character, integer, float, string, escape sequences 3.5 Data types – built-in and user defined 3.6 Operators and Expressions Operator types (arithmetic, relational, logical, assignment, bitwise, conditional, other operators), precedence and associatively rules.	5
Unit – IV	 Control Structures 4.1 Decision making structures If, ifelse, switch 4.2 Loop Control structures While, dowhile, for 4.3 Nested structures 4.4 break, continue and goto 	8

Unit – V	Functions in C	
	5.1 What is a function	
	5.2 Advantages of Functions	
	5.3 Standard library functions	
	5.4 User defined functions :Declaration,	8
	definition, function call, parameter	
	passing (by value), return keyword	
	5.5 Scope of variables, storage classes	
	5.6 Recursion	
Unit – VI	Arrays	
	6.1 Array declaration, initialization	
	6.2 Types – one, two and	5
	multidimensional	
	6.3 Passing arrays to functions	

References:

- 1. Yashavant Kanetkar : Let Us C 7th Edition, PBP Publications
- 2. E Balaguruswamy : Programming in ANSI C 4th Edition, Tata Mc-Graw Hill Publishing Co.Ltd.-New Delhi
- 3. Brian W. Kernighan and Dennis M. Ritchie : The C Programming Language 2nd Edition, Prentice Hall Publication
- 4. The Complete Reference to C, Herbert Schildt
- 5. Problem Solving with C, Harrow
- 6. Yeshwant Kanitkar :Graphics using C- BPB Publication.

F.Y. B. Sc.(Computer Science) (Semester- I) (wef. 2019-20)

Subject : Computer Science Title of Paper: DBMS-I Paper Code: CSCO1102 Paper : II No. of lectures: 36

Credit: 2

Learning objective :Students successfully completing this course will be able to:

- Understand design and implementation of a database system.
- Study the physical, logical database designs and database modeling.
- Understanding and development for essential DBMS concepts.
- Understand creations, manipulation and querying of data in databases.

Learning Outcomes:

- Master the basics of database concepts and database management system
- Model an application's data requirements using conceptual modeling tools like ER model, relational model.
- Write SQL commands to create tables, insert, update, delete and querying data.

Units	Title & Content	No. Of lecture			
	1. Introduction to File organization & DBMS				
	1.1 Introduction				
Unit I	1.2 Types of file organization				
	1.3 File system Vs DBMS				
	1.4 Data models	04			
	1.5 Levels of abstraction	V T			
	1.6 Data independence				
	1.7 Structure of DBMS				
	1.8 Users of DBMS				
	1.9 Advantages of DBMS				
	2.Conceptual Design (E-R model)				
	2.1 Overview of DB design				
	2.2 ER data model (entities, attributes, entity sets,				
Unit II	relations, relationship sets)	10			
	2.3 Additional constraints (Key constraints, Mapping constraints),				
	2.4 Conceptual design using ER modelling				
	2.4 Case studies				
	3. Relational data model				
	3.1 Structure of Relational Databases (concepts of a table, a row, a				
Unit III	relation, a Tuple and a key in a relational database)	04			
	3.2 Conversion of ER to Relational model	V 4			
	3.3. Integrity constraints (primary key, referential integrity,				
	unique constraint, Null constraint, Check constraint)				
	4. Relational algebra				
	4.1 Preliminaries				
Unit IV	4.2 Relational algebra (selection, projection set operations,	04			
	renaming, joins, division)				
	4.3 Problems.				
	5. Introduction to SQL				
	5.1 Introduction				
Unit V	5.2 Basic structure				
	5.3 Set operations	08			
	5.4 Aggregate functions	08			
	5.5 Null values				
	5.6 PL/PgSqL: Data types, Language structure				

	6. Operations with SQL	
	6.1 Nested Subqueries	
	6.2 Modifications to Database	
Unit VI	6.3 DDL and DML commands with examples	06
	6.4 SQL mechanisms for joining relations (inner joins, outer joins	
	and their types)	
	6.5 Examples on SQL (case studies)	

References

- Shamkant B. Navathe, Ramez Elmasri, Database Systems, JSBN:9780132144988, PEARSON HIGHER EDUCATION
- Richard Stones, Neil Matthew, Beginning Databases with PostgreSQL: From Novice to Professional, ISBN:9781590594780, Apress
- 3. Korry Douglas, PostgreSQL, ISBN:9780672327568, Sams
- JohnWorsley, Joshua Drake, Practical PostgreSQL(BCD),ISBN:9788173663925 Shroff/O'reilly
- 5. Joshua D. Drake, John C Worsley, Practical Postgresql, (O'Reilly publications)
- 6. Bipin C Desai, "An introduction to Database systems", Galgotia Publications
- Henrey Korth, Sudarshan, Silberschatz "Database System Concepts" (4th Ed), McGraw Hill,.

	F.Y. B. Sc.(Computer S	cience) Semester l	[(wef. 2019-20)
Subject	: Computer Science	Paper Code	: CSCO1103
Title of Pag	per: Lab Course – I (Basic C)	Paper	: III (Lab Course-I)
Credit: 2		No. of Practical	: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- 1. Design and implement a 'C' programs for different problems
- 2. Understand appropriate use of language structure.

Learning Outcome: Problem solving and programming capability.

Semester I (Credits – 02) No. of Practicals – 10)	
	Title of Experiment/ Practical
1	Assignment to demonstrate use of data types, simple operators & expressions.
2	Assignment to demonstrate decision making statements (if and if-else, nested structures)
3	Assignment to demonstrate decision making statements (switch - case)
4	Assignment to demonstrate use of simple loops
5	Assignment to demonstrate use of nested loops
6	Assignment to demonstrate menu driven programs.
7	Assignment to demonstrate writing C programs in modular way (use of user defined functions)
8	Assignment to demonstrate recursive functions.
9	Assignment to demonstrate use of arrays (1-d arrays) and functions
10	Assignment to demonstrate use of arrays (1-d arrays) and functions

	F.Y. B. Sc.(Computer Science)) Semester I (wef. 2	019-20)
Subject	: Computer Science	Paper Code	: CSCO1104 (Grade)
Title of Pap	ber : Lab Course – II (DBMS I)	Paper	: IV(Lab Course-II)
Credit	: Grade	No. of Practical	: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- Define & manipulate the database Concepts.
- Understand SQL with DDL and DML Commands.

Learning Outcome: To know the DBMS Concepts and to operate Database Software.

Semester I No. of Practicals – 10	
	Title of Experiment/ Practical
1	Create simple tables , with only the primary key Constraint
2	Create more than one table with integrity constraint
3	Create more than one table, with referential integrity constraint.
4	Drop a table from database, Alter the table.
5	Insert/Update/Delete statements.
6	Query for the tables using simple form of Select Statement
7	Query solving for tableoperations(Aggregate function)
8	Nested Query solving for tableoperations(Union, Intersect, Except)
9	Nested Query solving for tableoperations(Set membership,
	Cardinality, Comparison)
10	To Small Case Studies.

Class: F.Y. B. Sc. (Computer Science) (Semester- II)Subject: Computer SciencePaper Code: CSCO1201Title of Paper: Advanced Programming using CPaper: ICredit: 2No. of lectures: 36

Learning Objectives: Students successfully completing this course will be able to:

- 1. Understand and design Programs through advanced C Concepts
- 2. Design graphics Programming.

Learning Outcome: To develop advanced as well as Graphics programming capability.

Units	Topics Contents	No. of
		Lectures
Unit – I	Pointers	
	1.1 Pointer declaration, initialization	
	1.2 Dereferencing pointers	
	1.3 Pointer arithmetic	
	1.4 Pointer to pointer	0
	1.5 Arrays and pointers	8
	1.6 Functions and pointers – passing	
	pointers to functions, function	
	returning pointers	
	1.7 Dynamic memory allocation	
Unit – II	Strings	
	2.1 Declaration and initialization, format	
	specifiers	
	2.2 Standard library functions	-
	2.3 Strings and pointers	6
	2.4 Array of strings	
	2.5 Command Line Arguments	
Unit – III	Structures and Unions	
	3.1 Creating structures	
	3.2 Accessing structure members (dot	
	Operator)	
	3.3 Structure initialization	
	3.4 Typedef	
	3.5 Array of structures	
	3.6 Passing structures to functions	10
	3.7 Nested structures	
	3.8 Pointers and structures	
	3.9 Self referential structure	
	3.10 Unions	
	3.11 Difference between structures and unions	
	structures and among	
Unit – IV	File Handling	
	4.1 Streams	
	4.2 Types of Files	6
	4.3 Operations on files	
	4.4 Random access to files	

Unit – V	C Preprocessor	
	4.1 Format of Preprocessor directive	
	4.2 File Inclusion directive	2
	4.3 Macro substitution, nested macro,	
	augmented macro	
Unit – VI	Graphics programming using C	
	6.1 Graphics driver and mode	
	6.2 Drawing simple graphical objects –	4
	line, circle, rectangle etc.	
	6.3 Outputting text, curves & Polygons	
	•	
References:		
1. Yashay	ant Kanetkar : Let Us C 7 th Edition, PBP Publications	3

- 2. E Balaguruswamy : Programming in ANSI C 4th Edition, Tata Mc-Graw Hill Publishing Co. Ltd.-New Delhi
- 3. Brian W. Kernighan and Dennis M. Ritchie : The C Programming Language 2nd Edition, Prentice Hall Publication
- 4. Herbert Schildt, The Complete Reference to C,
- 5. Harrow, Problem Solving with C

: F.Y. B. Sc.(Computer Science) (Semester- II) Class Subject Paper Code : CSCO1202 : Computer Science Title of Paper: DBMS-II Paper No. of lectures: 36 Credit: 2

Prerequisites: Knowledge of DBMS

Learning Objectives:-Students successfully completing this course will be able to:

: II

- Understand fundamental concepts of RDBMS (PL/PgSQL)
- Understand data security and its importance •
- Understand client server architecture

Learning Outcomes:

- Develop the database design by normalization.
- Knowing functional dependencies and design of the relational database.
- Design concept of Transaction and Query processing.

Unit	Title & Content	No. Of lecture
Unit I	 Relational Database Design 1.1 Preliminaries 1.2 Normalization (1NF,2NF,3NF,BCNF,4NF, 5 NF) 1.3 Controlling the program flow, conditional statements, loops 1.4 Handling errors and exceptions, Cursors 1.5 Views, Stored Functions, Stored Procedures, Triggers 	12
Unit II	 2 Transaction Concepts and concurrency control 2.1 Transaction, properties of transaction, state of the transaction. 2.2 Executing transactions concurrently associated problem in concurrent execution. 2.3 Schedules, types of schedules, Serializability, precedence graph for Serializability. 2.4 Ensuring Serializability by locks, different lock modes, 2PL and its variations. 2.5Basic timestamp method for concurrency, Thomas Write Rule. 2.6Locks with multiple granularity, dynamic database concurrency (Phantom Problem). 2.7 Timestamps versus locking. 2.8 Deadlock handling methods 2.8.1 Detection and Recovery (Wait for graph). 2.8.2 Prevention algorithms (Wound-wait, Wait-die) 	10
Unit III	 3 Database Integrity and Security Concepts 3.1 Domain constraints 3.2 Referential Integrity 3.3 Introduction to database security concepts 3.4 Methods for database security 3.4.1Discretionary access control method 3.4.2Mandatory access control and role base access control for multilevel security. 3.5 Use of views in security enforcement. 3.6 Overview of encryption technique for security. 3.7 Statistical database security. 	06
Unit IV	 4 Crash Recovery 4.1 Failure classification 4.2 Recovery concepts 4.3 Log base recovery techniques (Deferred and Immediate update) 4.4 Checkpoints 	04

	4.5 Recovery with concurrent transactions (Rollback, checkpoints, commit) 4.6 Database backup and recovery from catastrophic failure	
	5. Client-Server Technology	
Unit V	 5.1 Describe client-server computing. 5.2 Evolution of Client - Server information systems. 5.3 Client – Server Architecture benefits. 	04
	5.4 Client Server Architecture - Components, Principles, Client Components, Communication middleware components, Database middleware components, Client Server Databases	

References:-

- 1. Elmasri and Navathe, Fundamentals of Database Systems (4th Ed)
- 2. Henrey Korth, Sudarshan, Silberschatz, Database System Concepts (4th Ed)
- 3. Practical PostgreSQL O'REILLY
- Richard Stones , Neil Matthew, Beginning Databases with PostgreSQL, From Novice to Professional, 2ndEdition, Apress

Class	: F.Y. B. Sc.(Computer Science) Ser	mester II	
Subject	: Computer Science	Paper Code	: CSCO1203
Title of Pape	er: Lab Course –I (Advanced C)	Paper	: III (Lab Course-I)
Credit: 2		No. of Practicals	: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- 1. Design and implement a 'C' programs for different problems
- 2. Understand use of appropriate Graphics Functions.

Learning Outcome: Problem solving and programming capability and develop Advanced as well as Graphics programming capability.

Semester II (Credits – 02) No. of Practicals – 10)	
	Title of Experiment/ Practical
1	Assignment to demonstrate use of pointers.
2	Assignment to demonstrate concept of strings (string & pointers)
3	Assignment to demonstrate array of strings.
4	Assignment to demonstrate use of bitwise operators.
5	Assignment to demonstrate structures and unions.
6	Assignment to demonstrate structures (using array and functions).
7	Assignment to demonstrate command line arguments and preprocessor directives.
8	Assignment to demonstrate file handling (text files & binary files)
9	Assignment to demonstrate graphics programming.
10	C Programming – Case study (Menu Driven Application Base) in Groups

Class: F.Y. B. Sc.(Computer Science)Semester IISubject: Computer SciencePaper Code : CSCO1204 (Grade)Title of Paper:Lab Course – II (DBMS II)Paper: IV (Lab Course-II)Credit: GradeNo. of Practicals: 10/Semester

Learning Objectives: Students successfully completing this course will be able to:

- Understand SQL with DDL and DML Commands.
- Understand RDBMS concepts.

Learning Outcome: To know the RDBMS Concepts and to operate Database Software.

Semester II No. of Practicals – 10	
	Title of Experiment/ Practical
1	Simple Queries
2	Nested Queries
3	Queries using aggregate functions
4	Queries using Views
5	Cursors
6	Exception Handling
7	Stored Function
8	Triggers
9	Case Study(1)
10	Case Studies (2)