Anekant Education Society's

Tuljaram Chaturchand College,

of Arts, Science & Commerce, Baramati

(Autonomous Institute)

Syllabus (CBCS) for S. Y. B. Sc. Microbiology

w.e.f.

June 2020

COURSE STRUCTURE FOR S. Y. B. SC. MICROBIOLOGY (w.e.f. June2020)

Sr. No.	Class	Semester	Code	Paper	Paper Title	Credit	Marks (I + E)
1	S.Y.B.Sc.	III	MICRO2301	Theory	Bacterial Systematics and Physiology	3	50 + 50
2	S.Y.B.Sc.	III	MICRO2302	Theory	Industrial and Soil Microbiology	3	50 + 50
3	S.Y.B.Sc.	III	MICRO2304	Practical	Practical course based on MICRO2301 and MICRO2302	2	50 + 50
4	S.Y.B.Sc.	IV	MICRO2401	Theory	Air and Water Microbiology	3	50 + 50
5	S.Y.B.Sc.	IV	MICRO2402	Theory	Bacterial Genetics	3	50 + 50
6	S.Y.B.Sc.	IV	MICRO2403	Practical	Practical course based on MICRO2401 and MICRO2402	2	50 + 50

I: Internal Examination E: External Examination

Class: S.Y.B.Sc. (Semester- III)

Paper Code: MICRO-2301

Paper: Theory Paper Title: Bacterial Systematics and

Physiology

Credit	Topics	3	Lectures
No.			
I	BACT		
	a.	Definition of species	1
	b.	Chemotaxonomy	5
	c.	Numerical taxonomy	3
	d.	Genetic basis of taxonomy	6
		i. G + C content	
		ii. DNA hybridization	
		iii. Base sequence similarity (Use of 16s rRNA databanks)	
II	BACT	ERIAL PHYSIOLOGY	
	a.	, , , , , ,	1
		and Fermentation.	
	b.	Metabolic pathways (with structures)	9
		EMP, HMP, ED, Phosphoketolase, Glyoxylate, TCA (with	
		emphasis on amphibolism), Homofermentative and	
		heterofermentative pathways.	
	c.	8 85 1	5
		phosphorylation and Substrate level phosphorylation,	
		Chemiosmotic hypothesis of ATP formation.	
III	BIOC	ATALYSTS	
	a.	Introduction to Enzymes: Nature of active site, ribozymes,	2
		coenzymes, apoenzymes, prosthetic group and cofactors.	
	b.	Nomenclature & classification as per IUB (up to class level).	3
	c.		5
		Models for catalysis –	
		i. Lock and key	
		ii. Induced fit	
		iii. Transition state.	
	d.	Effect of pH & temperature, substrate concentration &	5
		enzyme concentration, activators and inhibitors of enzyme	

Class: S.Y.B.Sc. (Semester- III)

Paper Code: MICRO-2302

Paper: Theory Paper Title: Industrial and Soil Microbiology

Credit	Topics	Lectures		
No.				
	INTRODUCTION TO INDUSTRIAL MICROBIOLOGY			
I, II and	a. Strains of industrially important microorganisms:			
III	 Desirable characteristics of industrial strain 	2		
	ii. Principles and methods of primary and secondary screening	2 3		
	iii. Inoculum preparation.	2		
	b. Equipment: Design of a basic Fermenter and its parts.	2		
	c. Process Control and Monitoring of different fermentation	3		
	parameters (temperature, pH, foam)	4		
	d. Media for industrial fermentations:	_		
	Constituents of media (Carbon source, nitrogen source,	7		
	buffers, antifoam agents, precursors, inhibitors).			
	e. Contamination: Sources, precautions, and consequences.	2		
	SOIL MICROBIOLOGY			
	a. Soil microorganisms, composition and types of soil.	1		
	b. Rhizosphere microflora and its role in the rhizosphere	2		
	c. Role of microorganisms in composting and humus formation	2		
	d. Role of microorganisms in following elemental cycles in	6		
	nature	0		
	Carbon, Nitrogen, Sulphur, Phosphorous.			
	e. Degradation of cellulose, hemicelluloses, lignin and pectin	6		
	f. Brief account of microbial interactions	6 5		
	Symbiosis, Neutralism, Commensalism, Competition,	3		
	Ammensalism, Synergism, Parasitism, and Predation			

Class: S.Y.B.Sc. (Semester- III)

Paper Code: MICRO-2304

Paper: Practical Paper Title: Practical course based on

MICRO2301 and MICRO2302

EXPT.	Topics	Hours
No.		
1	Growth curve:	4
	a. Absorbance measurement for bacterial culture	
	b. Growth curve plotting by using computer software	
2-7	Biochemical characterization of bacteria:	
	a. Sugar utilization test (minimal medium + sugar)	2
	b. Sugar fermentation test	2
	c. IMViC	4
	d. Enzyme detection – Amylase, Gelatinase, Catalase, Oxidase	10
	e. Oxidative-fermentative test	4
8	Primary screening of industrially important organisms:	4
	a. Organic acid producing microorganisms	
	OR	
	b. Antibiotic producing microorganisms (crowded plate technique)	

Class: S.Y.B.Sc. (Semester- IV)

Paper Code: MICRO-2401

Paper: Theory Paper Title: Air and Water Microbiology

Cledit.	5 Credits	T .
Credit	Topics	Lectures
No.		
I	AIR MICROBIOLOGY	
	Air flora: Transient nature of air flora	2
	Droplet, droplet nuclei, and aerosols	
	a. Air pollution: Chemical pollutants, their sources in air and	
	effects on human health.	2
	b. Methods of Air sampling and types of air samplers	
	i. Impaction on solids	6
	ii. Impingement in liquid	
	iii. Sedimentation	
	iv. Centrifugation	
	c. Air sanitation: Physical and chemical methods	3
	d. Air borne infections	2
П	WATER MICROBIOLOGY	
	a. Types of water: surface, ground, stored, distilled, mineral and	2
	de-mineralized water	
	b. Water purification methods, Bacteriological standards of	2
	potable water Maharashtra pollution control board (MPCB),	
	Central pollution control board (CPCB), Bureau of Indian	
	standards (BIS) World health Organization (WHO)	
	c. Indicators of faecal pollution;	5
	i. Escherichia coli	
	ii. <i>Bifidobacterium</i>	
	iii. Streptococcus faecalis	
	iv. Clostridium perfringens	
	v. New indicators: <i>Campylobacter</i> and <i>Pseudomonas</i>	
	d. Water borne Infections	1
	e. Bacteriological analysis of water for potability	5
	i. Presumptive coliform count	
	ii. Confirmed test	
	iii. Completed test	
	iv. Eijkman test	
	v. Membrane filter technique	
III	SEWAGE & WASTE WATER	
111	a. Analysis of waste water	3
	i. Physic chemical parameters: pH, temperature, total	
	solids, suspended solids, Chemical Oxygen	
	Demand(C.O.D.)	
	ii. Biological parameters: B.O.D.	
	iii. Industrial water pollutants, their ecological effects	
	and health hazards (Biomagnification and	
	eutrophication)	
	* '	10
	b. Methods of effluent treatment – Primary, secondary, tertiary	10
	treatment methods	2
	c. Recycling of waste water and sludge	2

Class: S.Y.B.Sc. (Semester- IV)

Paper Code: MICRO-2402

Paper: Theory Paper Title: Bacterial Genetics

Credit	Topics		Lectures
No.			
I	UNDERSTANDING MOLECULES	OF HEREDITY	
	a. Discovery of transforming mate	Discovery of transforming material (hereditary material):	
	Griffith's Experiment.		
	b. Evidence for nucleic acid as ger	netic material	4
	 Avery and MacLeod expenses 	eriment	
	ii. Gierer and Schramm / Fra	aenkel-Conrat & Singer	
	experiment (TMV virus)		
	iii. Hershay& Chase experim		
	c. Prokaryotic genome organizatio		1
	d. Basic structure of B form of DN		7
	structure and properties of plasm		
	e. Comparative account of differen		1
	DNA REPLICATION AND EXPRES	SSION	
II and III	 a. DNA replication 		7
		experiment (semiconservative)	
	ii. Mechanisms of DNA re		
	Semi-discontinuous, rol	C .	
	b. Gene organization and expression	on	10
	i. What is Gene?		
	ii. Properties of genetic coo		
	iii. Basic mechanism of tran		
	iv. Basic mechanism of tran	nslation	
	MUTATIONS		
	a. Spontaneous mutations		4
	i. Mechanisms		
	ii. Fluctuation test		
	b. Mechanisms of induced mutation		_
	1	Fransitions, Transversions),	5
	•	p purine, 5bromo uracil),	
		es (ethyl methyl sulphonate)	2
		Insertions and deletions),	3
		Br, acridine orange), UV rays.	1
	c. Types of mutations: Nonsense, l	Missense, Conditional lethal	1
	temperature sensitive.		

Class: S.Y.B.Sc. (Semester- IV)

Paper Code: MICRO-2403

Paper: Practical Paper Title: Practical course based on

MICRO2401 and MICRO2402

Credit: **2 Credit**s

EXPT.	Topics	Hours
No.		
1	Air sampling using an air sampler & calculation of air flora from	4
	different locations with the knowledge of respective standards of	
	bacterial & fungal counts.	
2-3	Bacteriological tests of potability of water	8
	a. MPN, confirmed and completed test.	
	b. Membrane filter technique (Demonstration)	
4	Determination of B.O.D.	4
5	Air Flora:	4
	a. Diversity determination.	
	b. Simpson index and settling velocity determination	
6	Identification of Any one bacterial isolates at least up to genus	8
	level from soil or air. (Preferably spore forming and pigmented	
	bacteria).	
7	Visits to	2
	a. Water purification plant/ Sewage treatment plant/Effluent	
	treatment plant/ Fermentation industry	

References:

- 1. Conn E., Stumpf P.K., Bruuening G., Doi RH. (1987) Outlines of Biochemistry 5th Ed , John Wiley and Sons, New Delhi. (Unit I & II)
- 2. Moat A.G. & Foster J.W. (1988) Microbial Physiology 2nd Ed. John Wiley and Sons New York. (Unit II & III)
- 3. Nelson D. L. & Cox M. M. (2005) Lehninger's Principles of Biochemistry, 4th edition, W. H. Freeman & Co. NY (Unit II & III)
- 4. Voet D. & Voet J. G. (1995) Biochemistry, 2nd Ed.. John Wiley & sons New York. (Unit II & III)
- 5. Bergey D. H. & Holt J. G. (1994) Bergey's Manual of Determinative Bacteriology. 9th Edition. Lippincott Williams & Wilkins. (Unit I)
- 6. Garrity G. M. (2005) Bergey's Manual of Systematic Bacteriology. 2nd Edition. (Vols. 1-4). Williams & Wilkins. (Unit I)
- 7. Madigan M. T., Martinko J. M. (2006) Brock's Biology of Microorganisms. 11th Edition. Pearson Education Inc. (Unit I, II& III)
- 8. Prescott L. M., Harley J. P. and Klein D. A. (2005) Microbiology, 6th Edition. MacGraw Hill Companies Inc.(Unit II)
- 9. Priest F. G. & Brian Austin. (1993) Modern Bacterial Taxonomy. Edn 2, Springer. (Unit I)
- 10. Casida LE. (1984) Industrial Microbiology. Wiley Easterbs, New Delhi
- 11. Ingraham J. L. and Ingraham C.A. (2004) Introduction to Microbiology. 3nd Edition. Thomson Brooks / Cole.
- 12. Modi H. A., (2008) Fermentation Technology Volumes I and II, Pointer Publishers, Jaipur, India
- 13. Patel A.H. (1985) Industrial Microbiology, Macmillan India Ltd.
- 14. Peppler H.L. (1979) Microbial Technology, Vol I and II, Academic Press.

- 15. Prescott S.C. and Dunn C.G. (1983) Industrial Microbiology. Reed G. AVI tech books.
- 16. Salle A.J. (1971) Fundamental Principles of Bacteriology. 7th Edition. Tata MacGraw Publishing Co.
- 17. Martin A. Introduction to Soil Microbiology (1961) John Wiley& Sons, New York and London publication
- 18. Subba Rao N. S. (1977) Soil Microbiology, 4th Ed., Oxford & IBH Publishing Co. Pvt. Ltd.
- 19. Dubey R.C., and Maheswari, D.K. Textbook of Microbiology, S. Chand & Co.
- 20. Mexander M. (1977) Introduction to soil microbiology, John Wilery NY.
- 21. Dube H.C. and Bilgrami. K.S.(1976) Text book of modern pathology. Vikas publishing house. New Delhi.
- Rangaswami G. (1979) Recent advances in biological nitrogen fixation. Oxford and IBH. New Delhi.
- 23. Stanbury P. F. and Whittaker A. (1984) Principles of Fermentation technology. Pergamon Press
- 24. Benjamin Lewin (1994) Genes I. Oxford University Press
- 25. Friefelder D. (1995) Molecular Biology, 2nd Edn. Narosa Publishing House.
- 26. Gardner E.J., Simmons M.J and Snustad D.P. (1991) Principles of Genetics. 8th Ed. John Wiley & Sons Inc.
- 27. Russel Peter. Essential Genetics. 2nd Edn, Blackwell Science Pub.
- 28. Stanier R.Y. (1985) General Microbiology. 4th and 5th Edn Macmillan Pub. Co. NY
- 29. Stent S.G. & Calender R. (1986) Molecular Genetics: An Introductory Narrative, 2nd Edition, CBS Publishers and Distributors, India.
- 30. Stricberger M.W. (1985) Genetics. 3rd Edition Macmillan Pub. Co. NY.
- 31. Watson J.D. (1987) Molecular Biology of the Gene, 4th Ed. The Benjamin Cummings Publishing Company Inc.
- 32. Daniel Lim., Microbiology, 2nd Edition; McGraw-Hill Publication
- 33. Tortora G.J., Funke B.R., Case C.L. (2006) Microbiology: An Introduction. 8th Edition.
- 34. Pelzar M. J., Chan E. C. S., Krieg N. R.(1986) Microbiology. 5th Edition, McGraw-Hill Publication
- 35. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press
- 36. Martin Frobisher (1937) Fundamentals of Microbiology, 8th Edition, Saunders, Michigan University press
- 37. Standard Methods for the Examination of Water and Wastewater (2005) 21st edition, Publication of the American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF); edited by Andrew D. Eaton, Mary Ann H. Franson.