Chapter 7. Image Segmentation

Ch.1~3: background

Ch.4~6: image processing tech.

Ch.7~9: image analysis

Techniques for extracting information from an image

- Image segmentation
 - image $\xrightarrow{subdivide}$ its constituent parts or objects
 - isolate object of interest
 - ex) Autonomous air-to-ground target acquisition application
 - image $\xrightarrow{seg.}$ road $\xrightarrow{seg.}$ vehicle
- Segmentation algorithm for mono. images
 - based on one of two basic properties of gray-level values : discontinuity and similarity
 - discontinuity
 - ✓ to partition an image based on abrupt changes in gray level
 - ✓ detection of isolated points, lines and edges in image
 - similarity
 - ✓ based on thresholding, region growing, and region splitting and merging
 - applicable to both static and dynamic images
 - motion: can be used as a powerful cue to improve the performance of segmentation algorithms

7.1 Detection of Discontinuities

- points, lines, edges: detected
- procedure

3× 3 mask

и _{'l}	w ₂	w ₃
w ₄	w ₅	w ₆
и _{'7}	w ₈	и _{'9}

$$R = \sum_{i=0}^{9} w_i z_i$$

where z_i : gray level of pixel associated with mask coeff. w_i

- response of mask: defined with its center location

7.1.1 Point Detection

-1	-1	-1
-1	8	-1
-1	-1	-1

ullet if |R| > T, isolated point : detected

where T : nonnegative threshold

- weighted difference between the center point and its neighbor

7.1.2 Line Detection

-1	-1	-1
2	2	2
-1	-1	-l

Horizontal	

-1	-1	2
-1	2	-1
2	-1	-1

+ 45°

-1	2	-1
-1	2	-1
-1	2	-1

Vertical

2	-1	-1		
-1	2	-i		
-1	-1	2		
-45°				

• the first mask

- respond more strongly to lines (one pixel thick) oriented horizontally

second: +45°

- third : vertical

- fourth : -45°

- R_1, R_2, R_3, R_4 : responses of four masks
 - if $|R_i| > |R_j|$ for all $j \neq i$
 - → that point : more likely associated with a line in direction of mask

ex.)
$$|R_i| > |R_j|$$
 j=2,3,4 \rightarrow Horizontal line

7.1.3 Edge Detection

- isolated points, thin lines
 - not frequent occurrences in most practical application
- edge detection
 - the most common approach for detecting meaningful discontinuities in gray level

1) Basic formulation

- Edge: the boundary between two regions with relatively distinct gray-level properties
- basic idea
 - computation of local derivative operator

- ✓ light strip on dark background
- ✓ edge: smooth change of gray level (blurred as a result of sampling)
- ✓ first derivative
 - : positive at the leading edge of transition
 - : negative at the trailing edge of transition
 - : zero in areas of constraint gray level
- ✓ second derivative
 - : positive for dark side
 - : negative for light side
 - : zero in constant area
- ✓ magnitude of first derivative
 - : used to detect the presence of a edge
- ✓ sign of second derivative
 - : used to determine whether an edge pixel lies on the dark or light side of edge
 - : zero crossing at the midpoint of a transition in gray level

- applied to an edge of any orientation
 - define a profile perpendicular to the edge direction at any desired point
- first derivative at any point
 - obtained by using the magnitude of gradient
- second derivative at any point
 - obtained by using the Laplacian

2) Gradient operators

- Gradient of image f(x,y) at location (x,y)
 - Vector

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

: points in the direction of max. rate of change of f at (x,y)

- Magnitude

$$\nabla f = mag(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$$

: max. rate of increase of f(x,y) per unit distance in the direction of ∇f

- appr.

$$\nabla f \approx |G_x| + |G_y|$$
 : much simpler to implement

- direction

$$\alpha(x,y) = \tan^{-1} \left(\frac{G_y}{G_x} \right)$$

- Sobel operator
 - ✓ Differencing and smoothing effect

Noise reduction effect

		z_1	z ₂	73.		
		<i>z</i> ₄	z ₅	76		
		z_{γ}	28	ž,		
			(a)			
		_	3			
-	2	-1	Ess.	r-1	0	-1
-	_	-1 0		-1 -2	0	2
_	_		10% 1 1009 1009	-2 -1		

$$G_x = (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3)$$

$$G_y = (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7)$$

ex.)

(a) original image

(b) $\left|G_{x}\right|$: horizontal derivative

(c) $\left|G_{y}\right|$: vertical derivative

(d) complete gradient image obtained by using Eg. 7.5-5

3) Laplacian

• the form most frequently encountered in practice

- $\nabla^2 f = 4z_5 (z_2 + z_4 + z_6 + z_8)$
- center coeffs. : positive
- outer coeffs. : negative
- sum of coeffs. : zero

0	-1	0
-1	4	-1
0	-1	0

- responds to transitions in intensity
- Laplacian: seldom used in practice for edge detection
 - unacceptively sensitive to noise
 - produce double edges
 - unable to detect edge direction
 - the secondary role of detector
 - : for establishing whether a pixel is an the dark or light side of an edge
- More general use of Laplacian: finding location of edge
 - use of zero-crossing property
 - convolution of image with Laplacian of 2-D Gaussian function of the form

$$h(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

- where σ : standard deviation
- Laplacian of h

$$\nabla^2 h = \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right) \quad \text{where } r^2 = x^2 + y^2$$

- zero crossing at $r = \pm \sigma$
- Laplacian image obtained by convoluting this operator with a given image → image blurring
- (※ 원영상과 $\nabla^2 h$ 를 convolution 하면 영상이 blurring 되면서 edge 에서 zero crossing 이 발생한다. 즉, black 은 negative, light 는 positive, 중간은 zero 값으로 된다.)

ex.)

- Edge detection
 - gradient operation
 - for image with shape transition and low noise
- Zero crossing method
 - for image with blurring and high noise
 - disadvantage
 - : computational complexity and time

7.2 Edge Linking and Boundary Detection

- edge detection tech.
 - seldom characterizes a boundary completely because of noise, break in boundary from nonuniform discontinuities, and other effects (spurious intensity discontinuities)

- followed by edge linking and other boundary detection tech.

7.2.1 Local Processing

- analyzing the char. of pixels in a small neighborhood (3x3 or 5x5)
 - similar points : linked, forming a boundary of pixels with common properties
- two principal properties

1) strength of response of gradient operator

2) direction of gradient

- similar magnitude

$$|\nabla f(x, y) - \nabla f(x', y')| \le T$$

- similar direction

$$|\nabla \alpha(x,y) - \nabla \alpha(x',y')| < A$$
 threshold

- if magnitude and direction criteria: satisfied
 - → two points : linked
- repeated for every location in image
- record for linked points
 - assign a different gray level to each set of linked edge pixels

7.2.2 Global Processing via the Hough Transform

• linking points

- determining whether they lie on a curve of specified shape
- use of global relationships between pixels
- alternative approach by Hough: Hough transform
 - a point : (x_i, y_i)
 - eq. of straight line: $y_i = ax_i + b$
 - in ab-plane (called parameter space)

$$b = -x_i a + y_i$$

: eq. single line for a fixed pair (x_i, y_i)

a second point : (x_j, y_j)

$$b = -x_j a + y_j$$

- at (a',b')

are line intercepts the other

where a': slope, b': intercept

- accumulator cells

$$\checkmark (a_{amx}, a_{min}), (b_{amx}, b_{min})$$

: expected ranges of slope and intercept value

 \checkmark the cell at coordinates (i,j) , with accumulator value A(i,j)

: corresponds to square associated with parameter space coordinates (a_i, b_j)

- \checkmark initially, cells=0 (i.e. A(i, j) = 0)
- \checkmark for every points (x_k, y_k)

: for each of the allowed subdivision values on the a axis

$$\rightarrow$$
 solve $b = -x_k a + y_k$

Rounded off to the nearest allowed value in the b axis

: if a choice of a_p results in b_q

$$\rightarrow A(p,q) = A(p,q) + 1$$

 \checkmark a value of M in A(i, j)

: corresponds to M points in the xy plane lying on the line $y = a_i x + b_i$

- ✓ accuracy: determined by the no. of subdivision in ab plane
- problem
 - ✓ for vertical line

a, b: approach infinity

- normal representation of line
 - $\checkmark x\cos\theta + y\sin\theta = \rho$

- \checkmark loci : sinusoidal curve in $\rho \theta$ plane
- range of angle $\theta=\pm90^{\circ}$, measured with the x axis horizontal line $\theta=0^{\circ}$, with $\rho=positive$ x intercept vertical line $\theta=90^{\circ}$, with $\rho=positive$ y intercept $\theta=-90^{\circ}$, with $\rho=negative$ y intercept

ex.)

general form $g(\mathbf{v}, \mathbf{c}) = 0$

where **v**: vector of coordinate

 ${f c}\,$: vector of coefficient

ex.) the points lying on the circle

$$(x-c_1)^2 + (y-c_2)^2 = c_3^2$$

✓ 3-D parameter space c_1, c_2, c_3

accumulator A(i, j, k)