
CPP Study Material
S.Y.B.Sc.(Computer Science)

Semester – II

Mr. Purushottam S. Dixit

Department of Computer Science
Tuljaram Chaturchand College,

Baramati.

Introduction to C++
 C++ is a middle-level programming language developed by Bjarne Stroustrup starting in 1979

at Bell Labs. As an enhancement to the C language and originally named C with Classes but later

it was renamed C++ in 1983.

 C++ runs on a variety of platforms, such as Windows, Mac OS, and the various versions of

UNIX.

 C++ is a super set of C programming with additional implementation of object-oriented

concepts.

 C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming.

 C++ is regarded as a middle-level language, as it comprises a combination of both high-level and

low-level language features.

 C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Why to Learn C++

1. C++ is very close to hardware, so you get a chance to work at a low level which gives you lot

of control in terms of memory management, better performance and finally a robust software

development.

2. C++ programming gives you a clear understanding about Object Oriented Programming. You

will understand low level implementation of polymorphism when you will implement virtual

tables and virtual table pointers, or dynamic type identification.

3. C++ is one of the every green programming languages and loved by millions of software

developers. If you are a great C++ programmer then you will never sit without work and more

importantly you will get highly paid for your work.

Applications of C++ Programming

As mentioned before, C++ is one of the most widely used programming languages. It has it's
presence in almost every area of software development. I'm going to list few of them here:

 Application Software Development - C++ programming has been used in developing almost
all the major Operating Systems like Windows, Mac OSX and Linux. Apart from the
operating systems, the core part of many browsers like Mozilla Firefox and Chrome have
been written using C++. C++ also has been used in developing the most popular database
system called MySQL.

 Programming Languages Development - C++ has been used extensively in developing new
programming languages like C#, Java, JavaScript, Perl, UNIX’s C Shell, PHP and Python, and
Verilog etc.

 Computation Programming - C++ is the best friends of scientists because of fast speed and
computational efficiencies.

 Games Development - C++ is extremely fast which allows programmers to do procedural
programming for CPU intensive functions and provides greater control over hardware,
because of which it has been widely used in development of gaming engines.

 Embedded System - C++ is being heavily used in developing Medical and Engineering
Applications like softwares for MRI machines, high-end CAD/CAM systems etc.

 This list goes on, there are various areas where software developers are happily using C++ to
provide great softwares. I highly recommend you to learn C++ and contribute great softwares
to the community.

C++ Program Structure
First Simple Program using C++

#include <iostream>

using namespace std;

int main() / / main() is where program execution begins.

{

cout << "Hello World"; // prints Hello World

return 0;

}

Let us look at the various parts of the above program −

 The C++ language defines several header files, which contain information that is either

necessary or useful to your program. For this program, the header <iostream> is needed.

 The line using namespace std; tells the compiler to use the std namespace. Namespaces are a

relatively recent addition to C++.

 The next line '// main() is where program execution begins.' is a single-line comment

available in C++. Single-line comments begin with // and stop at the end of the line.

 The line int main() is the main function where program execution begins.

 The next line cout << "Hello World"; causes the message "Hello World" to be displayed on

the screen.

 The next line return 0; terminates main()function and causes it to return the value 0 to the

calling process.

Compile and Execute C++ Program

Follow the following steps –

 Save the file as: hello.cpp ,

 Open a command prompt and go to the directory where you saved the

file.

 Type 'g++ hello.cpp' and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to

the next line and would generate a.out executable file.

 Now, type 'a.out' to run your program.

 You will be able to see ' Hello World ' printed on the window.

C++ Identifiers

 A C++ identifier is a name used to identify a variable, function, class, module, or any other

user-defined item.

 An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores, and digits (0 to 9).

 C++ does not allow punctuation characters such as @, $, and % within identifiers.

 C++ is a case-sensitive programming language. Thus, Manpower and manpower are two

different identifiers in C++.

Here are some examples of acceptable identifiers −

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Here are some examples of Invalid identifiers −

5abc Amol@123 roll no

C++ Keywords
• Keywords are the words reserved by the language and having some specific meaning.

• The following list shows the reserved words in C++. These reserved words may not be used

as constant or variable or any other identifier names.

asm else new this auto enum operator

throw bool explicit private true break export

protected try case extern public typedef catch

false register typeid char float long typename

class for return union const friend short

unsigned static goto signed static_cast continue if

sizeof virtual default inline const_cast void delete

int using volatile do reinterpret_cast struct wchar_t

double mutable switch while dynamic_cast namespace template

Comments in C++

• Program comments are explanatory statements that you can include in the C++ code. These

comments help anyone reading the source code. All programming languages allow for some

form of comments.

• C++ supports single-line and multi-line comments. All characters available inside any

comment are ignored by C++ compiler.

• C++ comments start with /* and end with */. For example −

// This is single line comment

/* This is a comment */

/* C++ comments can also

* span multiple lines

*/

C++ Data Types
While writing program in any language, you need to use various variables to store

various information. Variables are nothing but reserved memory locations to store

values. This means that when you create a variable you reserve some space in

Memory. Based on the data type of a variable, the operating system allocates

memory and decides what can be stored in the reserved memory.

Primitive Built-in Types

• C++ offers the programmer a rich assortment of built-in as well as user defined

data types. Following table lists down seven basic C++ data types −

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

The following table shows the variable type, how much memory it takes to store the value in memory, and

what is maximum and minimum value which can be stored in such type of variables.

Type Typical Bit Width Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int 2bytes 0 to 65,535

signed short int 2bytes -32768 to 32767

long int 8bytes -2,147,483,648 to 2,147,483,647

signed long int 8bytes same as long int

unsigned long int 8bytes 0 to 4,294,967,295

long long int 8bytes -(2^63) to (2^63)-1

unsigned long long int 8bytes 0 to 18,446,744,073,709,551,615

float 4bytes

double 8bytes

long double 12bytes

wchar_t 2 or 4 bytes 1 wide character

Variable Definition in C++

• C++ also allows to define various other types of variables, which we will cover in
subsequent chapters like Enumeration, Pointer, Array, Reference, Data
structures, and Classes.

• A variable definition tells the compiler where and how much storage to create for
the variable. A variable definition specifies a data type, and contains a list of one or
more variables of that type as follows −

type variable_list;

• Here, type must be a valid C++ data type including char, w_char, int, float, double,
bool or any user-defined object, etc., and variable_list may consist of one or more
identifier names separated by commas.

Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

Variable Scope in C++

• A scope is a region of the program and broadly speaking there are three places,

where variables can be declared −

• Inside a function or a block which is called local variables,

• In the definition of function parameters which is called formal parameters.

• Outside of all functions which is called global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be

used only by statements that are inside that function or block of code. Local variables are

not known to functions outside their own.

Global Variables

• Global variables are defined outside of all the functions, usually on top of the

program. The global variables will hold their value throughout the life-time of

your program.

• A global variable can be accessed by any function. That is, a global variable is

available for use throughout your entire program after its declaration.

Operators in C++

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations.

C++ is rich in built-in operators and provide the following types of operators −

 Arithmetic Operators :- + , - , * , / , % , ++ , --

 Relational Operators :- == ,!= , < , > , <= , >=

 Logical Operators :- && , || , !

 Bitwise Operators :- &, | , ^

 Assignment Operators :- = , +=, -=,*=,/=,%=, <<=, >>= , &= , |= , ^=

 Misc Operators :- sizeof , ?: , (,) , (.) , -> , cast

C++ Loop Types

There may be a situation, when you need to execute a block of code

several number of times. In general, statements are executed sequentially:

The first statement in a function is executed first, followed by the second,

and so on.

Programming languages provide various control structures that allow for

more complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times and following is the general from of a loop statement in

most of the programming languages −

 for

Syntax :
for(initilization ; condition ; modification)

{

// body of for loop

}

While

Syntax

while(condition)

{

// body of the loop

}

do-while

Syntax

do

{

}while(condition);

C++ decision making statements

• Decision making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the
condition is determined to be false.

• Following is the general form of a typical decision making structure found in most of the
programming languages −

 if

Syntax :

if(condition)

{

// statements

}

 if-else

Syntax :

if(condition)

{

// statements

}

else

{

// statemetns

}

 Nested if

Syntax :

if(condition)

{

if(condition)

{

}

….

}

 Switch

Syntax :

switch(condition)

{

case Label:

// statements

break;

case Label :

// statement

break;

…

…

}

C++ Functions

 A function is a group of statements that together perform a task. Every C++ program has at

least one function, which is main(), and all the most trivial programs can define additional

functions.

 You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function

performs a specific task.

 A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

 The C++ standard library provides numerous built-in functions that your program can call.

For example, function strcat() to concatenate two strings, function memcpy() to copy one

memory location to another location and many more functions.

 A function is known with various names like a method or a sub-routine or a procedure etc.

Function Declarations

A function declaration has the following parts −

return_type function_name(parameter list);

Defining a Function

The general form of a C++ function definition is as follows −

return_type function_name(parameter list)

{

body of the function

}

Calling a Function
 While creating a C++ function, you give a definition of what the function has to do. To use a

function, you will have to call or invoke that function.

 When a program calls a function, program control is transferred to the called function. A

called function performs defined task and when it’s return statement is executed or when its

function-ending closing brace is reached, it returns program control back to the main

program.

 To call a function, you simply need to pass the required parameters along with function name,

and if function returns a value, then you can store returned value. For example −

Syntax :

Funcation_name(parameters);

