
Python Classes / Object

A class is a user-defined blueprint or prototype from which objects are created. Classes provide a
means of bundling data and functionality together. Creating a new class creates a new type of object,
allowing new instances of that type to be made. Each class instance can have attributes attached to it for
maintaining its state. Class instances can also have methods (defined by its class) for modifying its state.

“Class creates a user-defined data structure, which holds its own data members and member
functions, which can be accessed and used by creating an instance of that class. A class is like a blueprint
for an object.”

Some points on Python class:
 Classes are created by keyword class.
 Attributes are the variables that belong to class.
 Attributes are always public and can be accessed using dot (.) operator. Eg.: Myclass.Myattribute

Class Definition Syntax:

class ClassName:
Statement-1
.
.
.
Statement-N

Example :

class Student:
A simple class
attribute
attr1 = "mamal"
attr2 = "dog"

A sample method
def fun(self):

print("I'm a", self.attr1)
print("I'm a", self.attr2)

Class Object :

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of the class
with actual values. It’s not an idea anymore, it’s an actual dog, like a dog of breed pug who’s seven years
old. You can have many dogs to create many different instances, but without the class as a guide, you
would be lost, not knowing what information is required.

An object consists of :
State : It is represented by attributes of an object. It also reflects the properties of an object.
Behavior : It is represented by methods of an object. It also reflects the response of an object with

other objects.
Identity : It gives a unique name to an object and enables one object to interact with other objects.

Declaring Objects (Also called instantiating a class)
When an object of a class is created, the class is said to be instantiated. All the instances share the

attributes and the behavior of the class. But the values of those attributes, i.e. the state are unique for
each object. A single class may have any number of instances.

Example:

class Dog:
A simple class
attribute
attr1 = "mamal"
attr2 = "dog"

A sample method
def fun(self):
print("I'm a", self.attr1)
print("I'm a", self.attr2)

Driver code
Object instantiation
Rodger = Dog()

Accessing class attributes
and method through objects
print(Rodger.attr)
Rodger.fun()

OutPut :
mamal
I'm a mamal
I'm a dog

In the above example, an object is created which is basically a dog named Rodger. This class only has
two class attributes that tell us that Rodger is a dog and a mammal.

The self
Class methods must have an extra first parameter in method definition. We do not give a value for this

parameter when we call the method, Python provides it.
If we have a method which takes no arguments, then we still have to have one argument.
This is similar to this pointer in C++ and this reference in Java.
When we call a method of this object as myobject.method(arg1, arg2), this is automatically converted

by Python into MyClass.method(myobject, arg1, arg2) – this is all the special self is about.

__init__ method
The __init__ method is similar to constructors in C++ and Java. Constructors are used to initialize the

object’s state. Like methods, a constructor also contains collection of statements(i.e. instructions) that are
executed at time of Object creation. It is run as soon as an object of a class is instantiated. The method is
useful to do any initialization you want to do with your object.

Example:
A Sample class with init method

class Person:

init method or constructor
def __init__(self, name):
self.name = name

Sample Method
def say_hi(self):
print('Hello, my name is', self.name)

p = Person('Nikhil')
p.say_hi()

OutPut : Hello, my name is Nikhil

Class and Instance Variables
Instance variables are for data unique to each instance and class variables are for attributes and

methods shared by all instances of the class. Instance variables are variables whose value is assigned inside
a constructor or method with self whereas class variables are variables whose value is assigned in the class.
Defining instance varibale using constructor.
Example:
Python program to show that the variables with a value
assigned in class declaration, are class variables and
variables inside methods and constructors are instance
variables.

Class for Computer Science Student
class Dog:

Class Variable
animal = 'dog'

The init method or constructor
def __init__(self, breed, color):

Instance Variable
self.breed = breed
self.color = color

Objects of CSStudent class
Rodger = Dog("Pug", "brown")
Buzo = Dog("Bulldog", "black")

print('Rodger details:')
print('Rodger is a', Rodger.animal)
print('Breed: ', Rodger.breed)
print('Color: ', Rodger.color)

print('\nBuzo details:')

print('Buzo is a', Rodger.animal)
print('Breed: ', Buzo.breed)
print('Color: ', Buzo.color)

Class variables can be accessed using class
name also
print("\nAccessing class variable using class name")
print(Dog.animal)

OutPut:
Rodger details:
Rodger is a dog
Breed: Pug
Color: brown

Buzo details:
Buzo is a dog
Breed: Bulldog
Color: black

Accessing class variable using class name
dog

Defining instance variable using normal method.
Example:

Python program to show that we can create
instance variables inside methods

Class for Computer Science Student
class Dog:

Class Variable
animal = 'dog'
The init method or constructor
def __init__(self, breed):
Instance Variable
self.breed = breed

Adds an instance variable
def setColor(self, color):
self.color = color

Retrieves instance variable
def getColor(self):
return self.color

Driver Code
Rodger = Dog("pug")
Rodger.setColor("brown")
print(Rodger.getColor())

OutPut: brown

Method Overloading In Python:

Like other languages (for example method overloading in C++) do, python does not supports method
overloading. We may overload the methods but can only use the latest defined method.

First product method.
Takes two argument and print their
product
def product(a, b):
p = a * b
print(p)

Second product method
Takes three argument and print their
product
def product(a, b, c):
p = a * b*c
print(p)

Uncommenting the below line shows an error
product(4, 5)

This line will call the second product method
product(4, 5, 5)

OutPut : 100

In the above code we have defined two product method, but we can only use the second product
method, as python does not supports method overloading. We may define many method of same name
and different argument but we can only use the latest defined method. Calling the other method will
produce an error. Like here calling product(4,5) will produce an error as the latest defined product method
takes three arguments.

However we may use other implementation in python to make the same function work differently i.e.
as per the arguments.
Example:

Function to take multiple arguments
def add(datatype, *args):
if datatype is int
initialize answer as 0
if datatype =='int':
answer = 0

if datatype is str
initialize answer as ''
if datatype =='str':
answer =''

Traverse through the arguments
for x in args:

This will do addition if the

https://www.geeksforgeeks.org/function-overloading-c/

arguments are int. Or concatenation
if the arguments are str
answer = answer + x

print(answer)
Integer
add('int', 5, 6)
String
add('str', 'Hi ', 'Geeks')

Output:
11
Hi Geeks

Operator Overloading in Python
Operator Overloading means giving extended meaning beyond their predefined operational meaning.

For example operator + is used to add two integers as well as join two strings and merge two lists. It is
achievable because ‘+’ operator is overloaded by int class and str class. You might have noticed that the
same built-in operator or function shows different behavior for objects of different classes, this is
called Operator Overloading.
Example:

Python program to show use of
+ operator for different purposes.
print(1 + 2)
concatenate two strings
print("ABC"+"For")
Product two numbers
print(3 * 4)
Repeat the String
print("ABC"*4)

Output:
3
ABCFor
12
ABCABCABCABC

How to overload the operators in Python?
Consider that we have two objects which are a physical representation of a class (user-defined data

type) and we have to add two objects with binary ‘+’ operator it throws an error, because compiler don’t
know how to add two objects. So we define a method for an operator and that process is called operator
overloading. We can overload all existing operators but we can’t create a new operator. To perform
operator overloading, Python provides some special function or magic function that is automatically
invoked when it is associated with that particular operator. For example, when we use + operator, the
magic method __add__ is automatically invoked in which the operation for + operator is defined.

Overloading binary + operator in Python :
When we use an operator on user defined data types then automatically a special function or magic
function associated with that operator is invoked. Changing the behavior of operator is as simple as
changing the behavior of method or function. You define methods in your class and operators work
according to that behavior defined in methods. When we use + operator, the magic method __add__ is
automatically invoked in which the operation for + operator is defined. There by changing this magic

method’s code, we can give extra meaning to the + operator.
Code 1:

Python Program illustrate how
to overload an binary + operator
class A:
def __init__(self, a):
self.a = a

adding two objects
def __add__(self, o):
return self.a + o.a

ob1 = A(1)
ob2 = A(2)
ob3 = A("ABC")
ob4 = A(" For")

print(ob1 + ob2)
print(ob3 + ob4)

OutPut :
3
ABC For

Code 2 :
Python Program to perform addition
of two complex numbers using binary
+ operator overloading.
class complex:
def __init__(self, a, b):
self.a = a
self.b = b

adding two objects
def __add__(self, other):
return self.a + other.a, self.b + other.b

def __str__(self):
return self.a, self.b

Ob1 = complex(1, 2)
Ob2 = complex(2, 3)
Ob3 = Ob1 + Ob2
print(Ob3)

OutPut:
(3,5)

Overloading comparison operators in Python :

Example:
Python program to overload
a comparison operators

class A:

def __init__(self, a):
self.a = a
def __gt__(self, other):
if(self.a>other.a):
return True

else:
return False

ob1 = A(2)
ob2 = A(3)
if(ob1>ob2):

print("ob1 is greater than ob2")
else:

print("ob2 is greater than ob1")

OutPut :
ob2 is greater than ob1

Overloading equality and less than operators :
Example: # Python program to overload equality

and less than operators

class A:
def __init__(self, a):
self.a = a

def __lt__(self, other):
if(self.a<other.a):
return "ob1 is lessthan ob2"

else:
return "ob2 is less than ob1"

def __eq__(self, other):
if(self.a == other.a):
return "Both are equal"

else:
return "Not equal"

ob1 = A(2)
ob2 = A(3)
print(ob1 < ob2)

ob3 = A(4)
ob4 = A(4)
print(ob1 == ob2)

Output :
ob1 is lessthan ob2
Not equal

Python magic methods or special functions for operator overloading
Binary Operators:

OPERATOR MAGIC METHOD

+ __add__(self, other)

– __sub__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

// __floordiv__(self, other)

% __mod__(self, other)

** __pow__(self, other)

Comparison Operators :

OPERATOR MAGIC METHOD

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

== __eq__(self, other)

!= __ne__(self, other)

Assignment Operators :

OPERATOR MAGIC METHOD

-= __isub__(self, other)

+= __iadd__(self, other)

*= __imul__(self, other)

/= __idiv__(self, other)

//= __ifloordiv__(self, other)

%= __imod__(self, other)

**= __ipow__(self, other)

Unary Operators :

OPERATOR MAGIC METHOD

– __neg__(self, other)

+ __pos__(self, other)

https://www.geeksforgeeks.org/basic-operators-python/

~ __invert__(self, other)

Python Inheritance :
Inheritance allows us to define a class that inherits all the methods and properties from another class.

Parent class is the class being inherited from, also called base class.
Child class is the class that inherits from another class, also called derived class.

Create a Parent Class
Any class can be a parent class, so the syntax is the same as creating any other class:

Example
Create a class named Person, with firstname and lastname properties, and a printname method:
class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname method:
x = Person("John", "Doe")
x.printname()

OutPut: John Doe

Create a Child Class
To create a class that inherits the functionality from another class, send the parent class as a

parameter when creating the child class:
Example
Create a class named Student, which will inherit the properties and methods from the Person class:
class Student(Person):

pass
Note: Use the pass keyword when you do not want to add any other properties or methods to
the class.

Now the Student class has the same properties and methods as the Person class.

x = Student("Mike", "Olsen")
x.printname()

OutPut : Mike Olsen

Add the __init__() Function
So far we have created a child class that inherits the properties and methods from its parent.

We want to add the __init__() function to the child class (instead of the pass keyword).
Note: The __init__() function is called automatically every time the class is being used to create a new
object.

Example
Add the __init__() function to the Student class:

class Student(Person):
def __init__(self, fname, lname):
#add properties etc.

When you add the __init__() function, the child class will no longer inherit the
parent's __init__() function.

Note: The child's __init__() function overrides the inheritance of the parent's __init__() function.

To keep the inheritance of the parent's __init__() function, add a call to the
parent's __init__() function:

Example:
class Student(Person):

def __init__(self, fname, lname):
Person.__init__(self, fname, lname)

Now we have successfully added the __init__() function, and kept the inheritance of the parent
class, and we are ready to add functionality in the __init__() function.

Use the super() Function
Python also has a super() function that will make the child class inherit all the methods and properties

from its parent:
Example:

class Student(Person):
def __init__(self, fname, lname):
super().__init__(fname, lname)

By using the super() function, you do not have to use the name of the parent element, it will
automatically inherit the methods and properties from its parent.

Add Properties:
Example : Add a property called graduationyear to the Student class:

class Student(Person):
def __init__(self, fname, lname):

super().__init__(fname, lname)
self.graduationyear = 2020

OutPut : 2020

In the example below, the year 2019 should be a variable, and passed into the Student class
when creating student objects. To do so, add another parameter in the __init__() function:

Example
Add a year parameter, and pass the correct year when creating objects:

class Student(Person):
def __init__(self, fname, lname, year):

super().__init__(fname, lname)
self.graduationyear = year

x = Student("Mike", "Olsen", 2020)

Add Methods:
Example

Add a method called welcome to the Student class:
class Student(Person):

def __init__(self, fname, lname, year):
super().__init__(fname, lname)
self.graduationyear = year

def welcome(self):
print("Welcome", self.firstname, self.lastname, "to the class of", self.graduationyear)

OutPut:
Welcome Mike Olsen to the class of 2020

If you add a method in the child class with the same name as a function in the parent class, the
inheritance of the parent method will be overridden.

Class or Static Variables in Python
Class or static variables are shared by all objects. Instance or non-static variables are different for

different objects (every object has a copy of it).
For example, let a Computer Science Student be represented by class CSStudent. The class may

have a static variable whose value is “cse” for all objects. And class may also have non-static members
like name and roll.

The Python approach is simple, it doesn’t require a static keyword. All variables which are
assigned a value in class declaration are class variables. And variables which are assigned values inside
class methods are instance variables.
Example:

Python program to show that the variables with a value
assigned in class declaration, are class variables
Class for Computer Science Student

class CSStudent:
stream = 'cse' # Class Variable
def __init__(self,name,roll):
self.name = name # Instance Variable
self.roll = roll # Instance Variable

Objects of CSStudent class
a = CSStudent('ABC', 1)
b = CSStudent('Nerd', 2)
print(a.stream) # prints "cse"
print(b.stream) # prints "cse"
print(a.name) # prints "ABC"
print(b.name) # prints "Nerd"
print(a.roll) # prints "1"
print(b.roll) # prints "2"

Class variables can be accessed using class
name also
print(CSStudent.stream) # prints "cse"

Output:
cse
cse
ABC
Nerd
1
2
cse

Class Method
The @classmethod decorator, is a builtin function decorator that is an expression that gets

evaluated after your function is defined. The result of that evaluation shadows your function definition.
A class method receives the class as implicit first argument, just like an instance method receives the
instance
Syntax:

class C(object):
@classmethod
def fun(cls, arg1, arg2, ...):

.…
fun: function that needs to be converted into a class method
returns: a class method for function.

- A class method is a method which is bound to the class and not the object of the class.
- They have the access to the state of the class as it takes a class parameter that points to the class and not
the object instance.
- It can modify a class state that would apply across all the instances of the class. For example it can modify
a class variable that will be applicable to all the instances.

Static Method :
A static method does not receive an implicit first argument.
Syntax:
class C(object):

@staticmethod
def fun(arg1, arg2, ...):

...returns: a static method for function fun.

- A static method is also a method which is bound to the class and not the object of the class.
- A static method can’t access or modify class state.
- It is present in a class because it makes sense for the method to be present in class.

Example :
Python program to demonstrate
use of class method and static method.
from datetime import date

class Person:
def __init__(self, name, age):
self.name = name
self.age = age

a class method to create a Person object by birth year.
@classmethod

https://www.geeksforgeeks.org/function-decorators-in-python-set-1-introduction/

def fromBirthYear(cls, name, year):
return cls(name, date.today().year - year)

a static method to check if a Person is adult or not.
@staticmethod
def isAdult(age):
return age > 18

person1 = Person('mayank', 21)
person2 = Person.fromBirthYear('mayank', 1996)

print person1.age
print person2.age

print the result
print Person.isAdult(22)

Output:
21
21
True

