ANEKANT EDUCATION SOCIETY'S

TULJARAM CHATURCHAND COLLEGE OF ARTS, SCIENCE AND COMMERCE, BARAMATI

AUTONOMOUS

QUESTION BANK

FOR

M.Sc(Sem-II)

STATISTICS

STAT- 4202: Parametric Inference

(With effect from June 2019)

Unit-1:

For 2 Marks:

Q1. Define the following terms with one illustration.

- Sufficient estimator of the parameter by using conditional probability approach.
- Sufficiency.
- Sufficient statistic.
- Joint sufficiency
- Likelihood equivalence.
- Minimal sufficient statistics.
- one parameter exponential family.
- Multi-parameter exponential family.

Q2. Choose the correct alternative of the following:

- Let X_1 , X_2 be a random sample from Poisson distribution with mean λ then $E[(X_1 \text{-} X_2)^2]$ is
 - a) 2λ b) λ^2 c) λ d) None of these
- Let X_1 , X_2 ,..., X_n be a random sample from N(θ , θ) where θ is unknown, then which of the following statement is not true?
 - a) $\left(\sum Xi^2\right)$ is sufficient for θ .
 - b) $(\sum Xi)$ is sufficient for θ .
 - c) $\left(\sum Xi, \sum Xi^2\right)$ is jointly sufficient for θ .
 - d) Sufficient statistic does not exist
 - Which of the following does not belongs to the exponential family of distributions?

a)
$$f(x,\theta) = \frac{1}{\theta} e^{-x/\theta}$$
, $x > 0$
b) $f(x,\theta) = e^{-(x-\theta)}$, $x > \theta$
c) $f(x,\theta) = \frac{5x^4}{\theta} e^{-x^5/\theta}$, $x > 0$
d) $f(x,\theta) = \frac{e^{-x/\theta}x^2}{2\theta^3}$, $x > 0$

- Let X_1 and X_2 be a random sample from a Poisson (θ). Then number of unbiased estimators of θ is :
 - a) infinity b) 3 c) 2 d) 4

• Consider Pitman family of distribution { $f(x, \theta), \theta \in \Theta$ } with $f(x,\theta) = \begin{cases} \frac{u(x)}{v(\theta)} & \text{if } a(\theta) < x < b(\theta) \\ 0 & Otherwise \end{cases}$

where u(x), $v(\theta) > 0$. Suppose $a(\theta)$ is increasing and $b(\theta)$ is decreasing function of θ . Then minimal sufficient statistic based on random sample of size n is given by:

- a) $\max\{a^{-1}(X_{(1)}), b^{-1}(X_{(n)})\}$ c) $\max\{a^{-1}(X_{(n)}), b^{-1}(X_{(1)})\}$
- b) $\min\{a^{-1}(X_{(n)}), b^{-1}(X_{(1)})\}$ d) $\min\{a^{-1}(X_{(1)}), b^{-1}(X_{(n)})\}$
- Two random samples X and Y of sizes n and m respectively from Exp(θ) are likelihood equivalent if and only if

a)
$$\sum_{i=1}^{n} X_i \neq \sum_{i=1}^{m} Y_i$$
 b) $\sum_{i=1}^{n} X_i > \sum_{i=1}^{m} Y_i$
c) $\sum_{i=1}^{n} X_i < \sum_{i=1}^{m} Y_i$ d) $\sum_{i=1}^{n} X_i = \sum_{i=1}^{m} Y_i$

- Let the random variable X follows U (θ , θ +1) then which of the following statement is not correct?
 - a) $X_{(1)}$ is sufficient for θ .
 - b) $(\bar{X} \frac{1}{2})$ is an unbiased estimator of θ .
 - c) UMVUE will not exist for θ .
 - d) Any value of θ in the interval [$X_{(n)}\mathchar`-1$, $X_{(1)}$] is an maximum likelihood estimator.

•

For 4 Marks:

- 1. Let X_1 , X_2 are i.i.d. $N(\theta, 1)$ random variables. Show that (mX_1+nX_2) is sufficient for θ if and only if m=n
- 2. Define a sufficient statistic and state the Neyman factorization criterion for it. Prove the result indiscrete case.
- 3. Consider the following p.m.f. $P(x=0) = \theta^{-\alpha}$, $P(X=1) = \alpha e^{-\alpha}$ and $P(X=2) = 1 e^{-\alpha} \alpha e^{-\alpha}$.

Given a random sample of size 2, show that $X_1 + X_2$ is not sufficient for α .

4. Define one parameter exponential family with parameter θ and obtain minimal sufficient statistic for θ .

5. Check whether following distribution belongs to exponential family.Justify your answer.

$$f(x,\theta) = \frac{1}{2} e^{-|x-\theta|} \theta$$
, x ε R

6. Let $X_{1_1}X_{2_2},...,X_n$ be random sample of size n having following probability density function

$$f(x,\theta) = \frac{3\theta^3}{x^4}$$
; $0 < \theta < x < \infty$. Show that $X_{(1)}$ is minimal sufficient statistic for θ

also find its probability density function.

- 7. Show that $N(\theta, \sigma^2)$ is a member of multi parameter exponential family when both θ and σ^2 are unknown
- 8. Check whether the following distribution belongs to exponential family.Justify youe answer

$$f(x,\theta) = \frac{1}{\pi [1 + (x - \theta)]^2}; \theta, x \in \mathbb{R}$$

9. Let X_1, X_2, X_3 are i.i.d. Bernoulli(p) and $S_1 = (X_1, X_2, X_3)$, $S_2 = (X_1 + X_2, X_3)$, $S_3 = (X_1 + X_2, X_3)$ check whether S_1, S_2, S_3 form sufficient partition.

10.Let X1,X2 be i.i.d. U(θ , θ +1), $\theta \in R$. Find minimal sufficient statistic for θ .

- 11.Show that for a sample of size 3 from Poisson(λ),($X_1, X_2 + X$) is sufficient for λ but not minimal sufficient for λ .
- 12. If T is a sufficient statistic for θ and $\phi(T)$ is sufficient statistics for θ when ϕ is one to one onto function.
- 13.Suppose X_1, X_2, \dots, X_n is a random sample from beta distribution of first kind with parameters (θ , 1).show that $T = \sum \log X_i$ is sufficient statistic for θ .
- 14.Check whether the following distribution is member of one parameter exponential family.
 - i) Ber(θ) and Bin(n, θ), where n is known.
 - ii) $P(\theta)$ and $Geo(\theta)$
 - iii) Discrete Uniform $\{x = 1, 2, ..., N\}$ and continuous U(0, θ).
 - iv) $Exp(\theta)$ and $N(\theta, 1)$
 - v) Cauchy (θ , 1) and X ~ Laplace(θ) with pdf $f(x, \theta) = \frac{1}{2}e^{-|x-\theta|}, x > 0, \theta > 0.$

vi) X ~ Laplace(
$$\theta$$
) with pdf $f(x, \theta) = \frac{1}{2\theta} e^{-|x|/\theta}, x > 0, \theta > 0.$

For 6 Marks:

- 1. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta_1, \theta_2)$. Show that $(\sum X_i, \sum X_i^2)$ form minimal sufficient statistic for $\underline{\theta} = (\theta_1, \theta_2)$.
- 2. Define m parameter exponential family. Let $X_1, X_2, ..., X_n$ be a random sample from m parameter exponential family the obtain a minimal sufficient statistic for the parameter $\underline{\theta} = (\theta_1, \theta_2, ..., \theta_m)'$
- 3. Define Pitman family and prove the following results If $a(\theta) \uparrow$, $b(\theta) \downarrow$ then min $\{a^{-1}(X_1), b^{-1}(X_n)\}$ is minimal sufficient statistics for θ .
- 4. Define sufficient partition. Let X_1, X_2 be i.i.d. $N(\theta, 1)$ then show that $T=IX_1+mX_2$ is sufficient iff I=m.
- 5. Show that $N(\theta, \sigma^2)$ is a member of multi parameter exponential family when both θ and σ^2 are unknown. Hence obtain a minimal sufficient statistic for (θ, σ^2) based on the random sample of size n drawn from $N(\theta, \sigma^2)$.
- 6. Define Pitman family and prove the following results
 If a(θ) ↓, b(θ)↑ then Max {a⁻¹(X₁),b⁻¹(X_n)} is minimal sufficient statistics for θ.
- 7. Define likelihood equivalence and explain its usefulness in obtaining a minimal sufficient statistic.
- 8. Define a sufficient statistic.Give one example of a statistic that is sufficient and one which is not(with justification using the definition only)
- 9. State and prove Neyman factorization theorem for a parametric family of discrete random variables. Hence check if (i) $X_1 + X_2$ and (ii) $X_1 + 2X_2$ are sufficient where $X_1 \& X_2$ are iid with p.m.f.

 $f(x, \theta) = (1 - \theta)\theta^x, x = 0, 1, 2, \dots, 0 < \theta < 1.$

10.Distinguish between a sufficient statistic and a minimal sufficient statistic. Discuss the relationship between them.

- 11. State Neyman factorizability Criterion for a statistic $T(x_1, ..., x_n)$ to be sufficient for the family $(L(x_1, ..., x_r \theta), \underline{x} \in S, \theta \in \Omega)$ and using this show that $X_{(n)}$ is a sufficient for θ for a random sample (r.s.) of size n on $U(0,\theta), \theta > 0$.
- 12. Let $\{f(x,\theta), \theta \in \Omega\}$ be a family of probability density functions such that

$$f(x,\theta),=\frac{u(x)}{v(\theta)}, a(\theta) < x < b(\theta)$$
$$=0, \text{ otherwise}$$

State what are the minimal sufficient statistics in each of the following cases.

(i) $a(\theta) = a(\text{constant})$

(ii)b(θ) =b(constant)

- 13. Let $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ be an ordered sample from {U(0, θ), $\theta > 0$ }. Find minimal sufficient statistic for θ .
- 14. Let $X_1, X_2, X_3 \& X_4$ be i.i.d $N(\theta, 1), \theta \in R_1$. Show that
 - (i) $(X_1 + X_2)$ is not sufficient
 - (ii) $(X_3 + X_4)$ is not sufficient
 - (iii) $(X_1 + X_2), (X_3 + X_4)$ is not sufficient
 - (iv) $(X_1 + X_2 + X_3 + X_4)$ is sufficient
- 15. Let X_1, X_{2_1}, \dots, X_n be i.i.d. $U(\theta 1, \theta + 1)$. Show that $(X_{(1)}, X_{(n)})$ is sufficient for θ but not complete. Is $(X_{(1)}, X_{(n)})$ minimal sufficient?
- 16. Let $X_1, X_2, ..., X_n$ be random sample from N(θ , 1),then show that T= $X_1+X_2+X_3$ is sufficient statistic for θ .
- 17. Let $X_1, X_2, ..., X_n$ be random sample from with density belonging to class $\{f(x,\theta), \theta \in \Omega\}$ which forms an exponential family the prove that joint distribution of $X_1, X_2, ..., X_n$ is also a member of one parameter exponential family.
- 18. Let X₁, X₂, ..., X_n be a random sample from a Pareto distribution with density function $f(x, \alpha, \beta) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find a sufficient statistics when (i) α is known, (ii) β is known and (iii) when both are unknown.

Let X₁, X₂, ..., X_n be a random sample from a random variable X with density function $f(x,\theta) = \frac{\theta}{(1+x)^{1+\theta}}, x > 0, \theta > 0$. Find a minimal sufficient statistic for θ .

- 19.Let X₁, X₂, ..., X_n be a random sample from a random variable X with density function $f(x,\theta) = \frac{\alpha^{\lambda}}{\lambda} e^{-\alpha x} x^{\lambda-1}, x > 0, \alpha, \lambda > 0$. Find a sufficient statistic when (i) α is known, (ii) λ is known and (iii) when both are unknown.
- 20. Let X₁, X₂, ..., X_n be a random sample from a random variable X with density function $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}, x > 0, \theta > 0$. Find a minimal sufficient statistic for θ .
- 21. Let X₁, X₂, ..., X_n be a random sample from a random variable X with pmf $f(x,\theta) = \theta(1-\theta)^{x-1}, x = 1, 2, ..., 0 < \theta < 1$. Find a minimal sufficient statistic for θ .
- 22. Let X₁, X₂, ..., X_n be a random sample from N(θ , θ^2) distribution. Show that (\overline{X} , S^2) is Minimal Sufficient Statistic.
- 23. Let X₁, X₂, ..., X_n be a random sample from a random variable X with density function $f(x,\theta) = \frac{\theta}{(1+x)^{1+\theta}}, x > 0, \theta > 0$. Find a minimal sufficient statistic for θ .
- 24. Check whether following distribution belongs to two parameter exponential family.

$$f(x, y) = {\binom{x}{y}} p^{y} (1-p)^{x-y} e^{-\theta} \frac{\theta^{x}}{x!}; \ y = 0, 1, \dots, x; x = 0, 1, \dots; 0 0$$

25. Check whether following distribution belongs to two parameter exponential family.

$$f(x,\theta,\lambda) = \frac{1}{\lambda\theta^{\lambda}} x^{\lambda-1} e^{\frac{-x}{\theta}} \quad x > 0, \theta, \lambda > 0$$

0 otherwise

- 26. Let X1, X2, ..., Xn be a random sample of size n from U(θ , θ +1) distribution. Obtain minimal sufficient statistic for θ .
- 27. Check whether the following distribution is member of one parameter exponential family.

X ~ Laplace(θ) with pdf $f(x,\theta) = \frac{1}{2}e^{-|x-\theta|}, x > 0, \theta > 0.$ X ~ Laplace(θ) with pdf $f(x,\theta) = \frac{1}{2\theta}e^{-|x|/\theta}, x > 0, \theta > 0.$

Unit-2:

For 2 marks:

Q1. Define the following terms:

- Fisher information function.
- Fisher information matrix.
- Unbiased estimator.
- Estimable function.
- Minimum variance unbiased estimator
- Minimum variance bound unbiased estimator
- Ancillary statistic
- Complete family.
- Complete sufficient statistic.
- Crammer Rao inequality.

Q2. Choose the correct alternatives of the following:

• Consider Cramer family of distribution $\{f(x, \theta), \theta \in \Theta\}$. Let T be unbiased for $\psi(\theta)$. Which of the following is Cramer-Rao inequality?

a)
$$P(|T - \theta| > k) \le \frac{Var(T)}{k^2}$$

b) $Var(T) \le \frac{[\psi'(\theta)]^2}{I_X(\theta)}$
c) $P(Sup | T - \psi(\theta) | > k) \le \frac{Var(T)}{k^2}$
d) $Var(T) \ge \frac{[\psi'(\theta)]^2}{I_X(\theta)}$

• Crammer Rao inequality is regarding

- a) Probability outside the critical region
- b) Variance of unbiased estimator
- c) Bound on power of UMP test
- d) Probability of union of two random events.
- Let X_1 and X_2 be a random sample from Ber(θ). Then which of the following is not estimable?

a) θ (1- θ^2) b) θ^2 c) θ d) 1- θ^2

• Which of the following statement is not true?

- a) Minimum Variance Unbiased Estimator (MVUE) is unique.
- b) Minimum Variance Bound Unbiased Estimator (MVBUE) always exist.
- c) Let $X_1, ..., X_n$ be a random sample from N(θ , 1). Then $\sum x_i$ is sufficient of θ .
- d) Likelihood equivalence leads to minimal sufficient statistics.
- Let X be a random variable with probability density function $f(x, \theta) = e^{-(x-\theta)}, x \ge \theta, \theta \in (-\infty, \infty)$. then MLE of θ is

a)
$$\frac{\sum_{i=1}^{n} X_{i}}{n}$$
 b) $\frac{\sum_{i=1}^{n} X_{i}}{n} - 1$ c) $X_{(n)}$ d) $X_{(1)}$

• Let $f(x, \theta)$ be the probability density function of a random variable X for which differentiation under integration sign is permissible then,

$$E\left(\frac{\partial}{\partial\theta}\log f(x,\theta)\right) \text{ is equal}$$

a) 0 b) I(θ) c) 1 d) Var(X)
 θ

• Let X and Y be i.i.d. Poisson random variable with mean $\frac{1}{2}$ then

- a) $T_1 = (X Y)^3$ is unbiased estimator of θ
- b) $T_2 = (X Y)^2$ is unbiased estimator of θ .
- c) $T_3 = (X Y)$ is unbiased estimator of θ .
- d) Unbiased estimator of θ does not exist.

For 4 Marks:

- 1. Show that unbiased estimator T of $\psi(\theta)$ iff T is uncorrelated with every unbiased estimator of zero.
- 2. Let X_1, X_2 be a random sample of size two from $P(\theta)$. Is $\psi(\theta) = \theta^2$ estimable?. Justify.

- 3. Define Complete sufficient statistic. Show that for Poisson distribution with parameter θ , T= $\sum X_i$ is complete statistic for θ .
- 4. Define MVBUE. Under regularity conditions show that if T is MVBUE of θ then it is sufficient for θ
- 5. Let $X_1, X_2, ..., X_n$ be a random sample from P(λ) , λ >0 and n>1.Find an unbiased estimator of λ^2 based on this unbiased estimator obtain uniformly minimum variance unbiased estimated for λ^2 .
- 6. Obtain information function of geometric distribution having parameter p.
- 7. Show that for a random sample of size n from Poisson with mean $\lambda, \lambda > 0, T = \sum_{i=1}^{n} X_i$ is complete for λ .
- 8. Let X_1, \ldots, X_n be i.i.d .U(0, θ) and let T=Max (X_1, \ldots, X_n),n \geq 2.Find unbiased estimator of $\psi(\theta) = 1/\theta$ based on T.
- 9. Define complete statistic. Show that for Poisson distribution with

parameter θ , $T = \sum_{i=1}^{n} X_i$ is complete for θ .

10.Let X1, X2 be a random sample from Bernoulli (p) then show that $\psi(p) = p3$ is not estimable.

For 6 Marks:

- 1. State and prove necessary and sufficient condition for existence of MVUE.
- 2. State and prove necessary and sufficient condition for existence of MVBUE.
- 3. Let $(X_1, X_2, ..., X_n)$ be i.i.d b(1, θ). Show that $T_1(X_1, X_2)=1$ if $X_1=1$, and $X_2 = 1$ and zero otherwise is an unbiased estimator of θ^2 and obtain Rao-Blackwellized version of T_1 w.r.t. $T=\sum_{i=1}^n X_i$ which is known to be sufficient for θ .
- 4. State and prove Rao Blackwell theorem.
- 5. State and prove Lehman scheffe theorem
- 6. State and prove Basu's theorem.
- 7. State and prove Crammer Rao inequality.
- 8. Let X have N(0, σ 2) distribution. Show that X is not complete but X2 is complete.
- 9. Let $X \sim Bin(n, p)$, where n is known. Find MVUE of p2 and p(1-p).

- 10. Let X1, X2, ..., Xn be a random sample from $P(\theta)$ distribution. Find MVUE for $P[X \le 1]$.
- 11. Let X1, X2, ..., Xn be a random sample from a random variable X with pmf $f(x,\theta) = \theta(1-\theta)^{x-1}, x = 1, 2, ..., 0 < \theta < 1$. Find MVUE of θ .
- 12. Define complete family of distribution. Show that $\{N(\theta, 1), \theta \in (-\infty, \infty)\}$ is a complete family of distribution.
- 13. Let X have N(0, σ 2) distribution. Show that X is not complete but X2 is complete.
- 14. Let X1, X2, ..., Xn be a random sample from a random variable X with pmf $f(x,\theta) = \theta(1-\theta)^{x-1}, x=1,2,..., 0 < \theta < 1$. Find MVUE of θ .
- 15. Let X1, X2, ..., Xn be a random sample from Poisson (θ) distribution. Suppose $\Psi(\theta) = e \cdot \theta$ is the parametric function of interest. Then show that, $\Psi(\theta)$ is an estimable function but MVBUE of $\Psi(\theta)$ does not exist

 $T_{1} = \begin{cases} 1 & ; if X_{i} = 0 \\ 0 & ; if X_{i} \neq 0 \end{cases}$ Let M= \sum Xi then carry out Rao Blackwellisation of T1 with respect to M.

- 16. Define Fisher information in a Sample Ix (θ) and information in a statistic IT (θ). Show that IT (θ) \leq Ix (θ).
- 17. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1)$ and $\psi(\theta) = \theta^2$. Give an unbiased estimator of $\psi(\theta)$. Examine whether its variance attains the Crammer–Rao Lower Bound.
- 18. Let X1, X2, ..., Xn be a random sample of size $n \ge 3$ from Bernoulli (p). Obtain an unbiased estimator of parameter p2(1 - p). Hence, find UMVUE of $p^2(1 - p)$.
- 19. Let X₁, X₂, ..., X_n be a random sample from exponential distribution with density function $f(x,\theta) = \frac{1}{\theta}e^{-\theta x}, x > 0, \theta > 0$. Show that $Y = \sum_{i=1}^{n} x_i$ is Complete.
- 20. Show that the one parameter exponential family of distribution is a Complete family of distribution.

- 21. Define complete statistic. If $\{f(x, \theta), \theta \in (-\infty, \infty)\}$ is one parameter exponential family, then show that $T = \sum_{i=1}^{n} K(x_i)$ is complete for θ .
- 22. Let $(X_1, X_2, ..., X_n)$ be i.i.d b $(1, \theta)$. Show that $T_1(X_1, X_2)=1$ if $X_1=1$, and $X_2 = 1$ and zero otherwise is an unbiased estimator of θ^2 and obtain Rao-Blackwellized version of T_1 w.r.t. $T=\sum_{i=1}^n X_i$ which is known to be sufficient for θ .

23.Let $X_1, X_2, ..., X_n$ be i.i.d. $U(\theta - 1, \theta + 1)$.Show that $(X_{(1)}, X_{(n)})$ is sufficient for θ but not complete. Is $(X_{(1)}, X_{(n)})$ minimal sufficient?

Unit-3:

For 2 Marks:

Q1. Define the following terms with one illustration.

- Critical region
- Test function
- OC curve
- Level of significance
- Size of the test
- MP test
- UMP test
- MLR property
- UMPU test
- Type I year
- Type II error
- Composite hypothesis

Q2. Choose the correct alternatives of the following:

• Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1)$ then SELCI of level α is:

a)
$$\left(\overline{X} - \frac{Z_{1-\alpha/2}}{\sqrt{n}}, \overline{X} + \frac{Z_{1-\alpha/2}}{\sqrt{n}}\right)$$
 c) $\left(\overline{X} - \frac{Z_{1-\alpha/2}}{\sqrt{n}}, \overline{X} + \frac{Z_{\alpha/2}}{\sqrt{n}}\right)$

b)
$$\left(\overline{X} - \frac{Z_{\alpha/2}}{\sqrt{n}}, \overline{X} + \frac{Z_{\alpha/2}}{\sqrt{n}}\right)$$
 d) $\left(\overline{X} - \frac{Z_{\alpha/2}}{\sqrt{n}}, \overline{X} + \frac{Z_{1-\alpha/2}}{\sqrt{n}}\right)$

Let X~N(θ, 4) distribution then 95% confidence interval for θ is
a) (X-2, X+2)
b) (X-0.75, X+0.75)

c)(X-3.92, X+3.92) d) (X-4, X+4)

For 4 Marks:

- 1. Define MLR property and show that distributions belonging to the one parameter exponential family possess this property.
- 2. State the Neymann-Pearson lemma for testing a simple hypothesis against a simple alternative .Prove the sufficiency part for $0 < \alpha < 1$.
- 3. Define a test function. Distinguish between a randomized and a non-randomized test and explain the advantage in using the former.
- 4. Find size and power of these test. Which one will you prefer? Why?
- 5. Define UMP and UMPU test.
- 6. Find UMP test α test for testing $H_0: \theta' = \theta_0 \text{Vs } H_1: \theta < \theta_0$, when a random sample is taken from {U(0, θ), $\theta > 0$ } distribution.
- 7. Let $f(x, \theta) = \theta e^{-x} + (1 \theta)x e^{-x}x > 0, 0 < \theta < 1$. On the basis of a sample of size one, obtain MP test of size $\alpha = e^{-1}$, to test $H_0 = 1$ vs $H_1: \theta = 1/2$.
- 8. Explain the terms: Rejection region, Errors of two types. Why the probabilities of two types of errors cannot be minimized simultaneously?
- 9. Let $X_1, ..., X_n$ be i.i.d exponential random variables with mean θ .Obtain the most powerful test for $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1(\langle \theta_0 \rangle)$.
- 10.Consider a sample of size 1.Obtain a most powerful size α test for $H_0: f_0(x) \sim N(0,1)$ against $H_1: f_1(x) \sim cauchy(0,1)$. Also obtain its power.

11. If X is a random variable having pdf $f(x, \theta) = \frac{1}{2}e^{-|x-\theta|}$; $x \in R$, $\theta \in R$, show

that the family has MLR property in x.

- 12. Give an example (with brief justification) in which a UMP test exists against a two sided alternative
- 13.Obtain MP level α test for testing $H_0: \theta = \theta_0 \text{Vs } H_1: \theta = \theta_1(\theta_1 > \theta_0)$, based on a random sample of size n from exponential distribution with mean θ .
- 14.Show that there does not exist UMP test for testing $H_0: \theta = 0$ against $H_0: \theta \neq 0$ at level α , when (x_1, \dots, x_n) is r.s. from N(θ , 1).
- 15.Show that the same test as given in above question continues to be UMP level α test for testing $H_0: \theta \le 1$ vs $H_1: \theta > 1$.

16.

For 6 Marks:

- 1. State Neyman-Person Lemma part-A and Part-B and prove Part-A.
- Let X be a discrete r.v. with pmf given by f₀(x) = .05 for x = 1,2, ..., 20 under H₀ and under H₁. f₁(x)=.06 for x=1, = .15for x=2.3 = ^{.10}/₁₇ for x=4,5,...,20
 Define φ₁(x) = 1,2 and zero otherwise and φ₂(x)=1/2 if x=2,3

=0 otherwise.

- 4. Show that both ϕ_1 and ϕ_2 are MP test of level $\alpha = 10$ with same power. Do ϕ_1 , ϕ_2 satisfy NP lemma?
- 5. For testing a composite null hypotheses $H_0: \theta \in \Omega_{H_0}$ vs $H_1: \theta \in \Omega_{H_1}$ define (i) size function,(ii)power function(iii) level α test and (iv) UMP level α test when H_1 is also composite.
- 6. For testing $H_0: \theta = 1$ vs $H_1: \theta > 1$ on the basis of a sample of size n on $f(x, \theta) = \theta e^{-\theta x}, x > 0, \theta > 0$. Obtain UMP level α test and show that its power function is monotone.
- Define a UMP test. Obtain such test for a U(0,θ)r.v. based on a random sample of size n, for testing H₀: θ = θ₀ against H₁: θ > θ₀. How is the test modified if alternative is left sided?

- 8. Sketch the power curve of the UMP test for $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ for a normal variate with mean θ and variance 1. Give justification briefly.
- 9. Define MLR property and illustrate with example as well as counter example. How is it useful in deriving optimal tests?
- 10.Show that a UMP test does not exist for a two sided alternative, to test a simple hypothesis about the population mean of a normal r.v. with known variance.
- 11.Let Let X_1, \ldots, X_n be independent and identically distributed random variables with p.d.f. $f(x, \theta), \theta \in \Omega$.Consider the problem of testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.Does a UMP test exist for the above problem? If yes, give an example of a distribution for which it exists and derive the UMP test for the same.
- 12.State the Neymann-Pearson fundamental lemma for test functions.
- 13.Let $X_1, ..., X_n$ be i.i.d random variables from $f(x, \theta), \theta \in \Omega = \{\theta_0, \theta_1\}$.Let $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$. Show that for every $\alpha, 0 < \alpha < 1$, there exists a $k \ge 0$ and the test $\phi_k(\underline{x})$, for which $E[\phi_k(\underline{x})] = \alpha$ where

$$\phi_k(\underline{x}) = \begin{cases} 1if \ L_1(\underline{x}) > kL_0(\underline{x}) \\ \gamma \ if \ L_1(\underline{x}) = kL_0(\underline{x}) \\ 0 \quad otherwise \end{cases}$$

- 14.Let $f(x, \theta) = 1/\pi 1/1 + (x-\theta)^2$, $x \in R_1$ and suppose it is desired to test $H_0: \theta = 0$ vs $H_1: \theta = 1$ on the basis of a single observation. Show that the test $\psi(x) = 1$ if 1 < x < 3 and zero otherwise is the MP test of its size.
- 15.Let $f(x, \theta) = \theta x^{\theta 1} 0 < x < 1$ and $\theta > 0$.Let (X_1, \dots, X_n) be a random sample of size n on $\{f(x, \theta), \theta > 0\}$.Obtain UMP level α test for testing $H_0: \theta \le 1$ Vs $H_1: \theta > 1$.
- 16.Define monotone likelihood ratio property and check whether $f(x, \theta) = \frac{1}{2} \exp\{-|x \theta|\}, x \in R, \theta \in R_1$ has this property.
- 17.how that UMP level α test does not exist for testing $H_0: \theta = \theta_0 \text{Vs } H_1: \theta \neq \theta_0$, based on a random sample of size n from {N(θ , 1), $\theta \in \mathcal{R}$ }.Suggest UMP unbiased test for the same problem.
- 18.Let $\{X_i\}_i^n$ be i.i.d with distribution $f(x, \theta), \theta \in \Omega$. Suppose it is desired to test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Show that any test $\varphi_k(x \sim), k \ge 0$ of the form.

 $= 1 \quad if \ L(x \sim \theta_1) > kL(x \sim, \theta_0)$ $\varphi_k(x) = \gamma \quad if \ L(x \sim \theta_1) = kL(x \sim, \theta_0)$ $= 0 \quad if \ L(x \sim \theta_1) < kL(x \sim, \theta_0)$

Is an MP test of size E $[\varphi_k(\mathbf{x}) \mid \theta_0]$.

- 19. What is MLR property ? Using MLR property obtain UMP test for testing $H_0: \theta = \theta_0 \text{Vs } H_1: \theta > \theta_0$, using a random sample of size n from $f(x, \theta) = e^{-(x-\theta)}, x > \theta$
- 20.Let X follows the p.d.f $f(x) = \theta x^{\theta 1}$, 0 < x < 1, $\theta > 0$.Derive the UMP test for $H_0: \theta = 1$ against $H_1: \theta < 1$ based on a sample of size n.
- 21.Derive a most powerful test based on a single observation on a r.v. x for H_0 :X follows Weibull distribution with p.d.f. x exp $-x^2/2$ against H_1 :X follows folded normal distribution with p.d.f. $(\sqrt{2/\pi})$ exp $-x^2/2$.Sketch the two density functions. Explain why the critical region obtained above is intuitively reasonable.
- 22.Define a UMP test. Explain how MLR property is useful in deriving such a test. Show that a MP test is always unbiased. Hence sketch the power function for testing H_0 : mean of a normal distribution with unit variance, is zero, against a one sided alternative .Explain briefly why a UMP test does not exist against a two-sided alternative.
- 23.Let X be a discrete random variable with pmf under $H_1 \& H_0$ given by

	X=x	1	2	3	4	
	$P_0(x)$	0.45	0.05	0.05	0.45	
	$P_1(x)$	0.20	0.30	0.30	0.20	
Define $\phi_1(x) =$	$\begin{cases} 1 & if \\ 0 & if \\ x \end{cases}$	x = 2 = 1,3	,4	& φ ₂	(<i>x</i>) =	$\begin{cases} 1 \ if \ x = 3 \\ 0 \ if \ x = 1,2,4 \end{cases}$

Unit-4:

For 2 Marks:

Q1. Define the following terms with one illustration.

- Confidence Interval.
- Shortest Expected Length C.I.
- Uniformly Most Accurate C.I.
- Prior Distribution.
- Posterior distribution.
- Loss Function.
- Conjugate Family.
- Coefficient of Confidence Interval.
- Equal tailed Confidence Interval.
- Pivotal quantity
- Baye's estimator.
- Minimax Decision Rule
- Risk function.

Q2. Choose the correct alternatives of the following.

- If $(X_{(1)}, X_{(n)})$ is a confidence interval for population median then the confidence coefficient is....
 - b) $1 \frac{1}{2^{n-1}}$ c) $\frac{1}{2^n}$ d) $1 \frac{1}{2^{n+1}}$ a) $1 - \frac{1}{2^n}$
- Pivotal quantity used for the construction of confidence interval for σ^2 , in case of N(μ , σ^2) distribution follows.....
 - a) Normal distribution b) Chi square distribution
 - d) F -distribution c) t- distribution
- We prefer the confidence interval with confidence coefficient $(1-\alpha)$ if it has.... a) Shortest width
 - b) equidistant confidence limits from parameter
 - c)longest width d) one sided confidence limits
- •

For 4 Marks:

1. Explain the concept of a confidence interval (CI). What is a pivotal quantity? Show with example its use in obtaining a CI.

- 2. Explain the connection between CI and test of hypothesis. What is a uniformly most accurate confidence bound? How can we get such a bound for the mean of a normal distribution with known variance?
- 3. Suppose a random sample of size 15 from a Bernoulli distribution with parameter p is as follows:

1,0,0,1,1,1,0,0,0,0,1,0,1,0,0

The prior distribution of p is a Beta distribution with parameters α =2 and β = Using squared error loss function. Obtain Baye's estimate of p.

4. The diameter of 10 ball bearings were measured in suitable units are as follows:

12.01, 12, 12.02, 12.01, 12.02, 12.01, 12.03, 12.02, 12.01, 12.00.

Find the 95% C.I. for mean diameter assuming the diameter to be normally distributed.

5. If X1,X2,...,Xn is a r.s. from exponential with mean $1/\theta$ find the $(1-\alpha)100\%$ C.I. for θ .

For 6 Marks:

- 1. Obtain Shortest Expected Length Confidence Interval (SELCI) of level $(1-\alpha)$ for θ based on independent random sample of size n from N(θ , 1) by using pivotal quantity depending on minimal sufficient statistic for θ .
- 2. Explain the term Posterior distribution. If X is a random variable having Ber(θ) distribution and $\theta \sim U(0, 1)$ then obtain posterior distribution of θ .
- 3. Define uniformly most accurate (UMA) confidence interval. Let X1, X2, ..., Xn be a random sample from N(θ , σ 2) where σ 2 is unknown derive equal tailed confidence interval for θ of level (1- α).
- 4. Define minimax decision rule. Let X~ Ber (p), $p \in \{\frac{1}{4}, \frac{1}{2}\}$ and A= $\{a_1, a_2\}$. Let the loss function given by

	a_1	a ₂
$P_1 = \frac{1}{4}$	1	4

-	$P_2 = \frac{1}{2}$	3	2
---	---------------------	---	---

Obtain minimax decision rule if the four decision rules are

i)
$$\delta_1(0) = \delta_1(1) = a_1$$

ii) $\delta_2(0) = a_1$, $\delta_2(1) = a_2$
iii) $\delta_3(0) = a_2$, $\delta_3(1) = a_1$
iv) $\delta_4(0) = \delta_4(1) = a_2$

5. Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with probability density function

$$f(x,\theta) = \theta x^{\theta-1} \quad 0 < x < 1, \ \theta > 0$$
$$0 \quad otherwise$$

Obtain UMA confidence interval for θ with confidence coefficient (1- α).

- 6. Describe a method of obtaining a confidence interval for a parameter θ based on a large sample. Hence obtain 100(1- α) % confidence interval for θ the mean of an exponential distribution.
- 7. Let X_1, X_2, \ldots, X_n be a random sample of size n from a population with p.d.f.

$$f(x,\theta) = \theta e^{-\theta x} ; x>0$$

= 0 ; otherwise
Let the parameter θ have the p.d.f.
 $h(\theta) = e^{-\theta} ; \theta > 0$

= 0 ; otherwise

Obtain Bayes solution for θ using a squared error loss function and $Y = \sum Xi$.

- If X follows a Binomial distribution with parameters (k,p) and the prior distribution of p is Beta distribution of first kind with parameters (α,β),then find the posterior distribution of p based on a random sample X₁,X₂,...,X of size n from the Binomial distribution.
- 9. If X follows a Poisson distribution with parameters λ and the prior distribution of λ is Gamma distribution with parameters (α , β), then find the posterior distribution of λ based on Y= $\sum Xi$.where X₁,X₂,...,X_n is r.s. of size n from the Poisson distribution.
- 10.Let $X_1, X_2, ..., X_n$ be a r.s. of size n from a Bernoulli distribution with parameters p as the probability of success.Let $Y = \sum Xi$. and the prior distribution of p is Beta distribution of first kind with parameters (α, β).Obtain Bayes estimator of p using a squared error loss function.

- 11.Let $X_1, X_2, ..., X_n$ be a r.s. of size n from a Binomial distribution with parameters k and p .Let $Y = \sum Xi$. and the prior distribution of p is Beta distribution of first kind with parameters (α, β).Obtain Bayes estimator of p using a squared error loss function.
- 12.Let $X_1, X_2, ..., X_n$ be a r.s. of size n from a Normal distribution with parameters µand σ^2 . where σ^2 is known. Let $Y = \overline{X}$ where \overline{X} is sample mean .Let the prior distribution of µ be normal with mean µ₀ and standard deviation σ_0 .Obtain Bayes estimator of µ using a squared error loss function.
