Anekant Education Society's Tuljaram Chaturchand College of Arts, Commerce and Science, Baramati

(Autonomous)

Question bank of M.Sc. STAT-4103: Probability Distributions Choose the correct alternative of the following:-

1) Let X be a random variable with $pdf f(x) = \frac{\theta}{x^{\theta+1}}$; $x \ge 1, \theta > 0$ then E(X) is equal to ...

a)
$$\frac{\theta}{\theta-1}$$
; $\theta > 1$ b) $\frac{\theta}{\theta+1}$; $\theta > 1$ c) $\frac{\theta}{\theta-2}$; $\theta > 2$ d) $\frac{\theta}{\theta+2}$; $\theta > 2$

2) Let X be a continuous random variable with distribution function F_X(x). Define Y = F_X(X). Then the distribution of -log(1 - Y) is
a) Standard Normal b)U(0,1)

c) Standard Laplace d) Standard Exponential

3) Let X be a degenerate random variable such that P(X = 2) = 1. Then $E(X) = \cdots$ and $Var(X) = \cdots$

- a)1,2 b) 1, does not exists c) 2,0 d)2,1
- 4) Let $X|p \sim Binomial(n, p)$ and $P \sim Beta(\alpha, \beta)$ then E(X) is
 - a) *nα*
 - b) $n\beta$ c) $\frac{n\alpha}{\alpha+\beta}$

d)
$$\frac{n\beta}{\alpha+\beta}$$

5) Which of the following function is not density function?

a)
$$f(x) = \begin{cases} Sin X & 0 < x < \frac{\pi}{2} \\ 0 & otherwise \end{cases}$$

b)
$$f(x) = \begin{cases} \frac{1}{\theta}e^{-\left(\frac{x-\mu}{\theta}\right)} & x > \mu, \theta > 0 \\ 0 & otherwise \end{cases}$$

c)
$$f(x) = \begin{cases} x(2-x) & 0 < x < 2 \\ 0 & otherwise \end{cases}$$

d)
$$f(x) = \frac{1}{\pi(1+x^2)} - \infty < x < \infty$$

6) Let X~Poisson(m) then the distribution of $Y = X^2 + 3$ is

a)
$$P(Y = y) = \begin{cases} \frac{e^{-m_m \sqrt{y-3}}}{\sqrt{(y-3)!}} & y = 3,4,7,12 \dots \\ 0 & otherwise \end{cases}$$

b) $P(Y = y) = \begin{cases} \frac{e^{-m_m \sqrt{y-3}}}{\sqrt{(y-3)!}} & y = 0,1,2 \dots \\ 0 & otherwise \end{cases}$
c) $P(Y = y) = \begin{cases} \frac{e^{-m_m y-3}}{(y-3)!} & y = 3,4,7,12 \dots \\ 0 & otherwise \end{cases}$

d) None of the above

Let X₁ and X₂ are iid random variables with exp(1) then moment generating function of X₁ – X₂ is

a)
$$\frac{1}{1-t^2}$$

b) $\frac{1}{1+t^2}$
c) $\frac{1}{1-t}$
d) $\frac{1}{1+t}$

8) Let X be a random variable such that variance of X is $\frac{1}{2}$. Then an upper bound for P[|X - E(X)| > 1] as given by the Chebyshev's inequality is

a)
$$\frac{1}{4}$$
 b) 1 c) $\frac{1}{2}$ d) $\frac{3}{4}$

9) Let X be a random variable with B (n, p). Then the distribution of n - X is:

a) B (n-1,p) b) B (n,1-p) c) B (n-1,1-p) d) B (n, p)

10) Suppose X has B (n, p) distribution then moment generating function of X is

a)
$$(p+qt)^n$$

b)
$$(p+qe^t)^n$$

c)
$$(q + pe^t)^n$$

d) $(q + pet)^n$

11) Two random variables X and Y are independent if and only if

- a) Corr (X, Y) = 0
- b) E(X, Y) = E(X). E(Y)

- c) $E(e^{txy}) = E(e^{tx})$. $E(e^{ty})$, for all $t \in R$
- d) E $(I_{[x \le t]}, I_{[y \le s]}) = E (I_{[x \le t]}, I_{[y \le s]})$ For all t and s in R, where I_A denotes the indicator function of the set A.

12) Let F be a function of two variables defined by

$$F(x, y) = \begin{cases} 0 & if \ x + y < 1 \\ 1 & otherwise \end{cases}$$

Which of the following statement is not correct?

a) F(x, y) is non decreasing function.

- b) F(x, y) is continuous from right with respect to each coordinate
- c) $P\left(\frac{1}{4} < X \le 1, \frac{1}{4} < Y \le 1\right) = 0$ d) $F(\infty, \infty) = 1$

13) Let (X, Y) have the joint pdf $f(x, y) = \frac{1}{4}$ inside the square with corners at the points (1,1), (-1,1), (1,-1) and (-1,-1) in the (x, y) plane and =0 otherwise. Then $P(X^2 + Y^2 < 1)$ is

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{8}$ c) $\frac{1}{2}$ d) $\frac{\pi}{4}$

14) If (X,Y) ~ Dirichlet (m,n) then marginal distribution of X and Y are

- a) Normal distribution b) Exponential distribution
- c) Beta distribution of first kind d) Beta distribution of second kind
- 15) Under the null hypothesis the distribution of sign statistics is

a) Binomial b) multinomial c) Normal d) Chi-square

16) If $(X,Y) \sim$ Bivariate Normal $(0,0,1,1,\rho)$ then distribution of Z=Y given X is

a) Cauchy distribution b) Normal distribution c)F distribution d) t distribution

- 17) If $(X,Y) \sim$ Bivariate Normal $(0,0,1,1,\rho)$ then correlation coefficient between X² and Y² is a) ρ b) ρ 2 c)0 d)+1
- 18) Let x_1, x_2, \dots, x_n be independent exponential random variables with respective failure rates $\lambda_1, \lambda_2, \dots, \lambda_n$ then $P[x_2 \le Min(x_1, x_2, \dots, x_n)]$ is

a)
$$\sum \lambda i$$
 b) $\lambda 1$ c) $\lambda 2/\sum \lambda i$ d) $\sum \lambda i/\lambda 1$

19) Let X and Y be two independent Poisson random variables with man 1 then P[X+Y=0] is

a) $2e^{-2}$ b) $2e^{-1}$ c) e^{-2} d) e^{-1}

20) Let x1,x2,x3,----xn be a random sample from exponential distribution with mean θ then E(X(1)) is

a) θ b) $n\theta$ c) $\frac{1}{\theta}$ d) $\frac{1}{n\theta}$ Unit1

Define the terms:

- 1) Random Variable
- 2) Random experiment
- 3) sample space
- 4) discrete random variable
- 5) continuous random variable
- 6) Moment generating function
- 7) Probability generating function
- 8) Distribution function
- 9) Probability generating function
- 10) Distribution function

Questions for 4 marks:

1) Check whether following function is distribution function. If so find the corresponding probability density function.

$$F(x) = \begin{cases} 0 & ;x < 1\\ \frac{(x-1)^2}{8} & ;1 \le x < 3\\ 1 & :x \ge 3 \end{cases}$$

2) Examine following function is cumulative distribution function of a random variable?

$$F(x) = \begin{cases} 1 - e^{-x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

3) Let X be a random variable with probability density function.

$$f(x) = \begin{cases} \frac{1}{2\theta} & ; -\theta \le x \le \theta\\ 0 & ; otherwise \end{cases}$$

Let $Y = \frac{1}{X^2}$. Find the probability density function of Y.

- 4) Suppose X has a Cauchy distribution with location 0 and scale 1. Find the distribution of $Y=X^2$
- 5) Let $X \sim U(0, 2\pi)$. Obtain the *pdf* of *SinX*.
- 6) Let *X*~*Exponential*(θ). Obtain the distribution of *Y* = $\left(X \frac{1}{\theta}\right)^2$

Question for 6 marks:-

1) Let X be a random variable with distribution function

$$F(x) = \begin{cases} 0 & ; x < 1 \\ 0.3 & ; 1 \le x < 2 \\ 0.9 - \frac{2}{x^2} & ; 2 \le x < 3 \\ 1 - \frac{2}{x^2} & ; x \ge 3 \end{cases}$$

Decompose F(x) as a mixture of discrete and continuous distribution. Also obtain its mean. 2) Let X be a random variable with distribution function

$$F(x) = 0 \qquad x < -2$$

$$\frac{5 - |X|}{8} \qquad -2 \le x < -1$$

$$\frac{8 - |X|}{8} \qquad -1 \le x < 0$$

Decompose F(x) as a mixture of discrete and continuous distribution function 3) Let X be a random variable with distribution function

f (x) =
$$\begin{cases} 0 & x < 1 \\ 0.3 & 1 \le x < 2 \\ 0.9 - \frac{2}{x^2} & 2 \le x < 3 \\ 1 - \frac{2}{x^3} & x \ge 3 \end{cases}$$

Decompose F(x) as a mixture of discrete and continuous distribution functions.

4) Consider the following distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < -2 \\ \frac{1}{3} & \text{if } -2 \le x < 0 \\ \frac{1}{2} & \text{if } 0 \le x < 5 \\ \frac{1}{2} + \frac{(x-5)^2}{2} & \text{if } 5 \le x < 5 \\ 1 & \text{if } x \ge 6 \end{cases}$$

Decompose F as a mixture of discrete and continuous distribution function. Find mean of X.

5) Let a distribution function (d. f.) be given by $F(x) = \begin{cases} 0 & ; x < 0 \\ \frac{x+1}{2} & ; 0 \le x < 1 \\ 1 & ; x \ge 1 \end{cases}$

Sketch the given df. Is the given d.f. is mixture d.f.? If so, decompose it in a continuous and discrete d.f. Also find the E(x).

Question for 8 marks:-

1) Let X be random variable of the continuous type with PDF f(x). Let y = g(x) be differential for all x and either g'(x) > 0 for all x or g'(x) < 0 for all x. Then prove that the probability density function for the random variable Y = g(X) is

$$h(y) = \begin{cases} f(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| & \alpha < y < \beta \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha = \min\{g(-\infty), g(+\infty)\}$ and $\beta = \max\{g(-\infty), g(+\infty)\}$

- 2) Find the probability generating function of the random variable X ~ B (n, p) and hence obtain mean and variance. If Y ~ B (m, p) and X, Y are independent random variable, find the probability distribution of X +Y.
- 3) Define probability generating function (p.g.f.) of r.v.X. Obtain p.g.f. of Poisson random variable.
- 4) If $x_1, x_2, x_3, \dots, x_N$ are iid random variables with common PGF $P_x(s)$ and N is random variable with PGF $Q_N(.)$ then show that PGF of $S_N = x_1 + x_2 + x_3 + \dots + x_N$ is $Q_N(Px(s))$
- 5) If $x_1, x_2, x_3, \dots, x_N$ are iid Bernoulli (p) and N is random variable with Poisson(λ) then find the probability distribution of $S_N = x_1 + x_2 + x_3 + \dots + x_N$

Define the following terms:-

- 1) Multiple random variable
- 2) Bivariate random vector (x,y)
- 3) joint probability distribution
- 4) marginal probability distribution
- 5) Conditional probability distribution
- 6) Conditional expectation
- 7) Convolution of random variable
- 8) Compound distribution
- 9) Location-scale family
- 10) Location family
- 11) Non regular family
- 12) Multiple correlation function
- 13) Partial correlation coefficient

Question for 4 marks:-

1) If E(Y) exists, then show that E(Y) = E[E(Y|X)] in discrete and continuous case.

2) Prove that:

i) Let
$$E(h(X))$$
 exists. Then $E(h(X)) = E\{E(h(X)|Y)\}$.

ii) If $E(X^2) < \infty$ then $var(X) = var(E\{X|Y\}) + E(var\{X|Y\})$.

- 3) Let $S_N = \sum_{i=1}^N X_i$ where N is a Poisson variable with parameter 1 and X_i's are independent and identically distributed Bernoulli variables with parameter p. Find expected value and variance of S_N.
- 4) Let X be a random variable with probability density function,

$$f(x) = \begin{cases} 2(1-x) ; 0 < x < 1\\ 0 ; otherwise \end{cases}$$

Sketch the graph of f(x).

5) State the necessary and sufficient condition for a function F(X, Y) to be a bivariate c.d.f.

6) Let X be random variable with pdf

$$F(x) = \begin{cases} \frac{1}{2} e^{-x/2} & x \ge 0\\ 0 & \text{other wise} \end{cases}$$

Find m.g.f. and hence find mean and variance of X.

- 7) Let $X \sim U(0, 1)$, $Y \sim U(0, 1)$ and X and Y are independent. Use method of convolution to find the density of X + Y.
- 8) If X & Y are iid $Exp(\lambda)$ using convolution find the probability distribution of X+Y.
- 9) If X & Y are iid Exp(1) using convolution find the probability distribution of X+Y.
- 10) Define compound distribution and obtain its mean and variance.
- 11) Suppose C denotes the unit circle in the plane. $C = \{(x, y): x^2 + y^2 \le 1\}$. We pick a point (X, Y) at random from C.
 - i) Find c such that $f(x, y) = \begin{cases} c & ; (x, y) \in C \\ 0 & otherwise \end{cases}$.

ii) Find the marginal densities for *X* and *Y* and the conditional densities.

- 12) Obtain the Characteristic function for U(-1,1) distribution.
- 13) Let *X* be random variable with *pdf*

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x < 1\\ \frac{1}{2} & \text{if } 1 < x < 2\\ \frac{1}{2}(3-x) & \text{if } 2 < x \le 3 \end{cases}$$

Show that moment of all order exists. Find mean of *X*.

14) Let X have the triangular $pdf f(x) = \begin{cases} x & 0 < x \le 1 \\ 2 - x & 1 \le x \le 2. \end{cases}$ Show that given pdf is symmetric otherwise

at 1. Also find E(X).

15) In a trivariate population with variable X_1, X_2 and X_3 it is given that the simple correlation between any two variables is equal to $\frac{1}{2}$. Find $R_{1,23}$ and $r_{12,3}$.

Questions for 8 marks:-

1) The *joint pmf* of (*X*, *Y*) is given by

$$P(x,y) = \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!}; y = 0,1, \dots, x, x = 0, 1, \dots, 0 0$$

Find marginal distribution of *Y* and find conditional distribution of X | Y = y.

- 2) State trinomial distribution for (X, Y) and state the results related to it.
- 3) Let X and Y be continuous random variable with joint probability density function,

$$f(x, y) = \begin{cases} 21x^2y^3 ; 0 < x < y < 1 \\ 0 ; otherwise \end{cases}$$

i) Find the marginal probability distribution of X and Y.

ii) Find conditional probability distribution of X|Y = y and E[X|Y=y].

4) If (X, Y) is a random vector with probability density function,

$$f(x, y) = \begin{cases} e^{-(x+y)} ; x > 0, y > 0\\ 0 ; otherwise \end{cases}$$

Find m.g.f. of (X, Y). Hence find marginal m.g.f. of X and Y. Also verify whether X and Y are independent. Obtain the m.g.f. of X+Y using joint m.g.f.

5) Let (X, Y, Z) be random vector with probability density function,

$$f(x, y, z) = \begin{cases} \frac{6}{(1 + x + y + z)^4} & ; x > 0, y > 0, z > 0 \end{cases}$$

Obtain probability density function of X+Y+Z

6) Let
$$f(x,y) = \begin{cases} 8xy ; 0 < x < y < 1 \\ 0 ; otherwise \end{cases}$$

Find i)
$$E(Y/X=x)$$
 ii) $Var(Y/X=x)$
7) Let $f(x, y) = 4x(1-Y) \quad 0 < x < 1; 0 < y < 1$
0 other wise

Obtain

- i) Marginal distribution of X and Y.
- ii) Conditional distribution of X given Y = y.
- 8) Let $X_1, X_2, ..., X_k$ are k independent Poisson variates with parameters $\lambda_1, \lambda_2, ..., \lambda_k$ respectively. Show that the conditional distribution of $X_1, X_2, ..., X_k$ given $\sum_{i=1}^k X_i = x$ is multinomial.
- 9) Let $f(x, y, z) = \begin{cases} e^{-x-y-z} & ; x > 0, y > 0, z > 0 \\ 0 & otherwise \end{cases}$ be the joint *pdf* of (X, Y, Z). Compute P(X < Y < Z) and P(X = Y < Z).

10) The *joint pmf* of (X, Y) is given by

$$P(x,y) = \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!}; \ y = 0,1, \dots, x, x = 0, 1, \dots, 0 0$$

Find marginal distribution of *Y* and find conditional distribution of X | Y = y.

Unit 3

Define the following terms:-

- 1) Bivariate Normal random variable (x,y)
- 2) Bivariate Poisson random variable(x,y)
- 3) Bivariate exponential family
- 4) Dirichlet distribution

Questions for 4 marks:-

- 1) Show that P (min(T_1, T_2) $\leq t$)=1-e^{- θt} where(T_1, T_2) follow bivariate exponential distribution.
- Define Dirichlet distribution .Show that bivariate beta distribution is a special case of Dirichlet distribution.
- 3) Define bivariate exponential distribution.state the memory less property satisfied by this distribution.
- Define Dirichlet distribution .Obtain conditional distribution of Y given X where(x,y) follows Dirichlet distribution. Identify this distribution.
- Define bivariate Poisson random variable (x,y). Obtain conditional distribution of Xgiven Y=y
- Define the Dirichlet distribution. Obtain marginal distribution of Y where (x,y)follows Dirichlet distribution.
- 7) Define Bivariate Normal distribution.obtain its m.g.f.
- 8) Define Bivariate exponential distribution (Marshall Olkin's method).Prove that it satisfies forgetfulness property.

Questions for 6 marks:-

1) Define Bivariate Normal distribution.Obtain its m.g.f.

2) State the regularity condition of exponential family. Check whether the following distributions are belongs to exponential family.

- a) $X \sim exp(\theta)$
- b) $X \sim N(\theta, 1)$
- c) $X \sim P(\theta)$
- d) X~G(α , β),both α and β are unknown.
- e) X~C(1, θ), where $\theta \in \mathbb{R}$
- f) X~NB(k,p) when k & p are known.
- g) X~U(0, θ)
- 3) Define Bivariate Poisson distribution. Derive its m.g.f.
- 4) If X & Y follow univariate normal distribution does(X,Y) always follow bivariate normal distribution? Justify your answer.

Questions for 8 marks:-

 Define bivariate normal distribution.If(X,Y) follow bivariate normal distribution.obtain m.g.f.of (X,Y). Show that X & Y are independent iff ρ=0

Unit 4

Define the following terms:-

- 1) Non-central chi-square distribution
- 2) Non-central F distribution
- 3) Order statistics
- 4) Non central t-distribution
- 5) Quadratic form

Questions for 4 marks:-

- 1) State and prove probability integral transformation theorem.
- 2) Write note on distribution free test.

- 3) Let x_1, x_2, \dots, x_n be a random sample from U(0,1) Find distribution of range.
- 4) Explain the terms:
 - a) Distribution free statistics
 - b) Empirical distribution function
- 6) Let A be an n × n symmetric matrix and Q = X'AX obtain m.g.f. of Q
- 7) Let x₁,x₂,----,x_n be a random sample from U(0,1) Obtain probability distribution of i)x₍₁₎ ii)x₍₂₎
- 8) Define Wilcoxon sign rank test for the population median state its test statistics.
- 9) Describe Kolmogorov –smirnov test.Prove that Dn+ is distribution free.
- 10) Let x_1, x_2, \dots, x_n be independent and identically distributed random variables from continuous distribution. Find the joint distribution of $r^{th} \& s^{th}$ order statistic.
- 11) Define W, the Wilcoxon statistic for testing the equality of two continuous distribution functions. Obtain mean and variance of W under the null hypothesis.
- 12) Let x_1, x_2, \dots, x_n be a random sample from U(0,1) Obtain probability distribution of $x_{(r)}$, $x_{(n-1)}$
- 13) Define Order statistics corresponding to a random sample of size n from continuous probability distribution .Obtain the joint probability distribution of nth order statistics.
- 14) Define Wilcoxon sign rank test for the population median. Obtain the null probability distribution of its test statistics.
- 15) Define order statistics.Let x_1, x_2, \dots, x_n be independent and identically distributed random variables from continuous distribution. Find the joint distribution of r^{th} & s^{th} order statistic.
- 16) Define order statistics.Let x_1, x_2, \dots, x_n be independent and identically distributed random variables from continuous distribution. Find the joint distribution of n^{th} order statistic.

Questions for 8 marks:-

- 1) State and prove Fisher- Cochran theorem. Discuss its one application.
- Derive the probability desity function of non-central t distribution. Also state its mean and variance.

- 3) Derive the probability desity function of non-central χ 2distribution. Also state its mean and variance.
- 4) Derive the probability desity function of non-central Fdistribution.
- 5) Let X be a random vector with N(0,In) distribution .show that two quadratic formsc X'AX & X'BX are independent iff AB=0 where A &B are symmetric idempotent matrices. Is the converse true?