Anekant Education Society's Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati

Autonomous

B.Sc.(Computer Science) Academic Year 2019-2020 - F.Y.B.Sc. (Computer Science) Credit Structure -

Subject		Sem	ester			Semester II			
	Paper			Practical Pa Paper		•		ctical Iper	Total
	I	II	III	IV	I	II	III	IV	
Computer Science	2	2	2	Grade	2	2	2	Grade	12
Mathematics	2	2	2		2	2	2		12
Electronics	2	2	2		2	2	2		12
Statistics	2	2	2		2	2	2		12
Physical Education									2

Total Number of Credits = 48(Core) + 2 (Physical Education) = 50

1 Theory Credit = 18 Lectures

- S.Y.B.Sc. (Computer Science) Credit Structure -

Subject	Semeste			I	Semester II				
	Ра	per	Practical		Paper		Practical		Total
		П	Pa III	aper IV	-	11	lli	iper IV	
Computer Science	3	3	2	Grade	3	3	2	Grade	16
Mathematics	3	3	2		3	3	2		16
Electronics	3	3	2		3	3	2		16
English	3				3				6
Evs.									4
Certificate	2			2			4		
Courses									

Total Number of Credits = 54 (Core) + 4 (EVS) + 4 (Certificate Courses) = 62

1 Theory Credit = 16 Lectures

- T.Y.B.Sc. (Computer Science) Credit Structure -

Subject	Theory						Total			
	I II III IV V VI		Lab	Lab	Lab					
							Course I	Course II	Course III	
Computer	3	3	3	3	3	3	2	2	2	24
Science										
Certificate		2							2	
Courses										

Semester V

- T.Y.B.Sc. (Computer Science) Credit Structure -

Semester VI

Subject	Theory							Total		
		I II III IV V VI		Lab	Lab	Lab				
							Course I	Course II	Course III	
Computer	3	3	3	3	3	3	2	2	2	24
Science										
Certificate		2						2		
Courses										

Total Number of Credits = 48 (Core) + 4 (Certificate Courses) = 52

1 Theory Credit = 16 Lectures

B.Sc. (Computer Science): Total credits = 50 + 62 + 52 = 164

B.Sc.(Computer Science) Semester-I & Semester-II Credit Structure & Syllabus (Academic Year 2019-2020, Autonomous)

Course Structure for F. Y. B. Sc. (Computer Sc	ience)
Subject: Computer Science	

Semester	Paper Code	Title of Paper	No. of Credits
	CSCO1101	Basic Programming using C	2
Ι	CSCO 1102	DBMS – I	2
	CSCO1103	Lab Course – I Basics on C	2
	CSCO1104	Lab Course – II Based on DBMS I	Grade
	CSCO 1201	Advanced Programming using C	2
II	CSCO 1202	DBMS – II	2
	CSCO 1203	Lab Course – I Basics on Advanced C	2
	CSCO1204	Lab Course– II Basics on DBMS II (PL/PgSql)	Grade

SYLLABUS (CBCS) FOR F. Y. B. Sc. (Computer Science) (w.e.f from June, 2019) Academic Year 2019-2020

Class : F.Y. B. Sc.(Computer Science) (Semester- I)

Subject : Computer Science

Paper Code : CSCO1101

Title of Paper: Basic Programming Using C Credit: 2 Paper : I

No. of lectures: 36

Learning Objectives: Students successfully completing this course will be able:

- 1. To understand and design algorithm for problem solving
- 2. To develop Problem Solving abilities using computers
- 3. To develop skills for writing programs using 'C'

Learning Outcome: Problem solving and programming capability.

Chapter	Topic Contents	No. of Lectures
Unit – I	Problem-Solving Using Computer1.1 Problem Solving1.2 Algorithms & Flowcharts (More Problems covered)1.3. Programming Languages Machine language High level languages	8
Unit – II	Introduction to C2.1 History2.2 Structure of a C program2.3 Application Areas2.4 C Program development life cycle 2.5Sample programs	2
Unit – III	C Tokens 3.1 Keywords 3.2 Identifiers 3.3 Variables 3.4 Constants – character, integer, float, string, escape sequences 3.5 Data types – built-in and user defined 3.6 Operators and Expressions Operator types (arithmetic, relational, logical, assignment, bitwise, conditional, other operators), precedence and associatively rules.	5
Unit – IV	 Control Structures 4.1 Decision making structures If, ifelse, switch 4.2 Loop Control structures While, dowhile, for 4.3 Nested structures 	8

	4.4 break, continue and goto	
Unit – V	Functions in C5.1 What is a function5.2 Advantages of Functions5.3 Standard library functions5.4 User defined functions :Declaration, definition, function call, parameter passing (by value), return keyword5.5 Scame of variables, storage shares	8
	5.5 Scope of variables, storage classes5.6 Recursion	
Unit – VI	 Arrays 6.1 Array declaration, initialization 6.2 Types – one, two and multidimensional 6.3 Passing arrays to functions 	5

References:

- 1. Yashavant Kanetkar : Let Us C 7th Edition, PBP Publications
- 2. E Balaguruswamy : Programming in ANSI C 4th Edition, Tata Mc-Graw Hill Publishing Co.Ltd.-New Delhi
- 3. Brian W. Kernighan and Dennis M. Ritchie : The C Programming Language 2nd Edition, Prentice Hall Publication
- 4. The Complete Reference to C, Herbert Schildt
- 5. Problem Solving with C, Harrow
- 6. Yeshwant Kanitkar :Graphics using C- BPB Publication.

Class	: F.Y. B. Sc.(Computer Science) (Semester- I)
-------	---

Subject	: Computer Science	Paper Code:	CSCO1102
Title of Pap	er: DBMS-I	Paper	: II

Credit: 2

Paper : II

No. of lectures: 36

Learning objective :Students successfully completing this course will be able to:

- Understand design and implementation of a database system. •
- Study the physical, logical database designs and database modeling. •
- Understanding and development for essential DBMS concepts. •
- Understand creations, manipulation and querying of data in databases. •

Learning Outcomes:

- Master the basics of database concepts and database management system •
- Model an application's data requirements using conceptual modeling tools like ER model, • relational model.
- Write SQL commands to create tables, insert, update, delete and querying data. •

Units	Title & Content	No. Of lecture
Unit I	 1. Introduction to File organization & DBMS 1.1 Introduction 1.2 Types of file organization 1.3 File system Vs DBMS 1.4 Data models 1.5 Levels of abstraction 1.6 Data independence 1.7 Structure of DBMS 1.8 Users of DBMS 1.9 Advantages of DBMS 	04
Unit II	 2.Conceptual Design (E-R model) 2.1 Overview of DB design 2.2 ER data model (entities , attributes, entity sets, relations, relationship sets) 2.3 Additional constraints (Key constraints, Mapping constraints), 2.4 Conceptual design using ER modelling 2.4 Case studies 	10
Unit III	 3. Relational data model 3.1 Structure of Relational Databases (concepts of a table, a row, a relation, a Tuple and a key in a relational database) 3.2 Conversion of ER to Relational model 3.3. Integrity constraints (primary key, referential integrity, unique constraint, Null constraint, Check constraint) 	04
Unit IV	 4. Relational algebra 4.1 Preliminaries 4.2 Relational algebra (selection, projection set operations, renaming, joins, division) 4.3 Problems. 	04

Unit V	 5. Introduction to SQL 5.1 Introduction 5.2 Basic structure 5.3 Set operations 5.4 Aggregate functions 5.5 Null values 5.6 PL/PgSqL: Data types, Language structure 	08
Unit VI	 6. Operations with SQL 6.1 Nested Subqueries 6.2 Modifications to Database 6.3 DDL and DML commands with examples 6.4 SQL mechanisms for joining relations (inner joins, outer joins and their types) 6.5 Examples on SQL (case studies) 	06

References

1. Shamkant B. Navathe, Ramez Elmasri, Database Systems, JSBN:9780132144988, PEARSON HIGHER EDUCATION

- 2. Richard Stones, Neil Matthew, Beginning Databases with PostgreSQL: From Novice to Professional, ISBN:9781590594780, Apress
- 3. Korry Douglas, PostgreSQL, ISBN:9780672327568, Sams

4. ,JohnWorsley, Joshua Drake , Practical PostgreSQL(BCD),ISBN:9788173663925 Shroff/O'reilly

5. Joshua D. Drake, John C Worsley , Practical Postgresql , (O'Reilly publications)6.Bipin C Desai , "An introduction to Database systems" , Galgotia Publications

7. Henrey Korth, Sudarshan, Silberschatz "Database System Concepts" (4th Ed), McGraw Hill, Class: F.Y. B. Sc.(Computer Science)Semester ISubject: Computer SciencePaper Code : CSCO1103Title of Paper: Basic CPaper: III (Lab Course)Credit: 2No. of Practicals: 10 /SemesterLearning Objectives: Students successfully completing this course will be able to:

1. Design and implement a 'C' programs for different problems

2. Understand appropriate use of language structure.

Learning Outcome: Problem solving and programming capability.

	Semester I (Credits – 02) No. of Practicals – 10)		
	Title of Experiment/ Practical		
1	Assignment to demonstrate use of data types, simple operators & expressions.		
2	Assignment to demonstrate decision making statements (if and if-else, nested structures)		
3	Assignment to demonstrate decision making statements (switch - case)		
4	Assignment to demonstrate use of simple loops		
5	Assignment to demonstrate use of nested loops		
6	Assignment to demonstrate menu driven programs.		
7	Assignment to demonstrate writing C programs in modular way (use of user defined functions)		
8	Assignment to demonstrate recursive functions.		
9	Assignment to demonstrate use of arrays (1-d arrays) and functions		
10	Assignment to demonstrate use of arrays (1-d arrays) and functions		

Class	: F.Y. B. Sc.(Computer Science	e) Semester	I
Subject	: Computer Science	Paper Code	: CSCO1104 (Grade)
Title of Pap	er :DBMS I	Paper	: IV(Lab Course)
Credit	: Grade	No. of Prac	ticals: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- Define & manipulate the database Concepts.
- Understand SQL with DDL and DML Commands.

Learning Outcome: To know the DBMS Concepts and to operate Database Software.

	Semester I No. of Practicals – 10		
	Title of Experiment/ Practical		
1	Create simple tables , with only the primary key Constraint		
2	Create more than one table with integrity constraint		
3	Create more than one table, with referential integrity constraint.		
4	Drop a table from database, Alter the table.		
5	Insert/Update/Delete statements.		
6	Query for the tables using simple form of Select Statement		
7	Query solving for tableoperations(Aggregate function)		
8	Nested Query solving for tableoperations(Union, Intersect, Except)		
9	Nested Query solving for tableoperations(Set membership,		
	Cardinality, Comparison)		
10	To Small Case Studies.		

Class: F.Y. B. Sc. (Computer Science) (Semester- II)Subject: Computer SciencePaper Code: CSCO1201Title of Paper: Advanced Programming using CPaper: ICredit: 2No. of lectures: 36

Learning Objectives: Students successfully completing this course will be able to:

- 1. Understand and design Programs through advanced C Concepts
- 2. Design graphics Programming.

Learning Outcome: To develop advanced as well as Graphics programming capability.

Units	Topics Contents	No. of
.		Lectures
Unit – I	Pointers 1.1 Pointer declaration, initialization	
	1.2 Dereferencing pointers1.3 Pointer arithmetic	
	1.4 Pointer to pointer	8
	1.5 Arrays and pointers	
	1.6 Functions and pointers – passing	
	pointers to functions, function	
	returning pointers	
	1.7 Dynamic memory allocation	
Unit – II	Strings	
	2.1 Declaration and initialization, format	
	specifiers	
	2.2 Standard library functions	6
	2.3 Strings and pointers	0
	2.4 Array of strings	
	2.5 Command Line Arguments	
Unit – III	Structures and Unions	
	3.1 Creating structures	
	3.2 Accessing structure members (dot	
	Operator)	
	3.3 Structure initialization	
	3.4 Typedef	
	3.5 Array of structures	10
	3.6 Passing structures to functions	10
	3.7 Nested structures	
	3.8 Pointers and structures	
	3.9 Self referential structure	
	3.10 Unions	
	3.11 Difference between structures and unions	
Unit – IV	File Handling	
	4.1 Streams	
	4.2 Types of Files	6
	4.3 Operations on files	
	4.4 Random access to files	

Unit – V	C Preprocessor 4.1 Format of Preprocessor directive 4.2 File Inclusion directive 4.3 Macro substitution, nested macro, augmented macro	2	
Unit – VI	Graphics programming using C		
	6.1 Graphics driver and mode		
	6.2 Drawing simple graphical objects –	4	
	line, circle, rectangle etc.		
	6.3 Outputting text, curves & Polygons		
2. E Balagu	nt Kanetkar : Let Us C 7 th Edition, PBP Publications ruswamy : Programming in ANSI C 4 th Edition, Tata N	Mc-Graw Hill	
Publishing Co. LtdNew Delhi			
3. Brian W	3. Brian W. Kernighan and Dennis M. Ritchie : The C Programming		
Languag	Language 2 nd Edition, Prentice Hall Publication		
4. Herbert Schildt, The Complete Reference to C,			
5 Harrow Broblem Solving with C			

5. Harrow , Problem Solving with C

Class : F.Y. B. Sc.(Computer Science) (Semester- II)

Subject : Computer Science

Title of Paper: DBMS-II

Credit: 2

Paper Code : CSCO1202 Paper : II No. of lectures: 36

Prerequisites: Knowledge of DBMS

Learning Objectives:-Students successfully completing this course will be able to:

- Understand fundamental concepts of RDBMS (PL/PgSQL)
- Understand data security and its importance
- Understand client server architecture

Learning Outcomes:

- Develop the database design by normalization.
- Knowing functional dependencies and design of the relational database.
- Design concept of Transaction and Query processing.

Unit	Title & Content	No. Of lecture
	1. Relational Database Design	
Unit I	1.1 Preliminaries	
	1.2 Normalization (1NF,2NF,3NF,BCNF,4NF, 5 NF)	12
	1.3 Controlling the program flow, conditional statements, loops	12
	1.4 Handling errors and exceptions, Cursors	
	1.5 Views, Stored Functions, Stored Procedures, Triggers	
	2 Transaction Concepts and concurrency control	
	2.1 Transaction, properties of transaction, state of the transaction.	
	2.2 Executing transactions concurrently associated problem in	
	concurrent execution.	
	2.3 Schedules, types of schedules, Serializability, precedence	
	graph for Serializability.	
Unit II	2.4 Ensuring Serializability by locks, different lock modes, 2PL and its variations.	10
Unit II		10
	2.5Basic timestamp method for concurrency, Thomas Write Rule.2.6Locks with multiple granularity, dynamic database	
	concurrency (Phantom Problem).	
	2.7 Timestamps versus locking.	
	2.8 Deadlock handling methods	
	2.8.1 Detection and Recovery (Wait for graph).	
	2.8.2 Prevention algorithms (Wound-wait, Wait-die)	
	3 Database Integrity and Security Concepts	
	3.1 Domain constraints	
	3.2 Referential Integrity	
	3.3 Introduction to database security concepts	
	3.4 Methods for database security	
Unit III	3.4.1Discretionary access control method	06
	3.4.2Mandatory access control and role base access control	
	for multilevel security.	
	3.5 Use of views in security enforcement.	
	3.6 Overview of encryption technique for security.	
	3.7 Statistical database security.	
	4 Crash Recovery	
	4.1 Failure classification	
Unit IV	4.2 Recovery concepts	04
	4.3 Log base recovery techniques (Deferred and Immediate	
	update)	

	 4.4 Checkpoints 4.5 Recovery with concurrent transactions (Rollback, checkpoints, commit) 4.6 Database backup and recovery from catastrophic failure. 	
Unit V	 5. Client-Server Technology 5.1 Describe client-server computing. 5.2 Evolution of Client - Server information systems. 5.3 Client – Server Architecture benefits. 5.4 Client Server Architecture - Components, Principles, Client Components, Communication middleware components, Database middleware components, Client Server Databases 	04

References:-

1. Elmasri and Navathe, Fundamentals of Database Systems (4th Ed)

- 2. Henrey Korth, Sudarshan, Silberschatz, Database System Concepts (4th Ed)

Practical PostgreSQL O'REILLY
 Richard Stones , Neil Matthew, Beginning Databases with PostgreSQL, From Novice to Professional, 2ndEdition, Apress

Class	: F.Y. B. Sc.(Computer Science	e) Semester	II
Subject	: Computer Science	Paper Code	: CSCO1203
Title of Pap	er: Advanced C	Paper	: III(Lab Course)
Credit: 2		No. of Prac	eticals: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- 1. Design and implement a 'C' programs for different problems
- 2. Understand use of appropriate Graphics Functions.

Learning Outcome: Problem solving and programming capability and develop Advanced as well as Graphics programming capability.

	Semester II (Credits – 02) No. of Practicals – 10)
	Title of Experiment/ Practical
1	Assignment to demonstrate use of pointers.
2	Assignment to demonstrate concept of strings (string & pointers)
3	Assignment to demonstrate array of strings.
4	Assignment to demonstrate use of bitwise operators.
5	Assignment to demonstrate structures and unions.
6	Assignment to demonstrate structures (using array and functions).
7	Assignment to demonstrate command line arguments and preprocessor directives.
8	Assignment to demonstrate file handling (text files & binary files)
9	Assignment to demonstrate graphics programming.
10	C Programming – Case study (Menu Driven Application Base) in Groups

Class	: F.Y. B. Sc.(Computer Science	e) Semester	II
Subject	: Computer Science	Paper Code	: CSCO1204 (Grade)
Title of Pape	er :DBMS II	Paper	: IV(Lab Course)
Credit	: Grade	No. of Prac	ticals: 10 /Semester

Learning Objectives: Students successfully completing this course will be able to:

- Understand SQL with DDL and DML Commands.
- Understand RDBMS concepts.

Learning Outcome: To know the RDBMS Concepts and to operate Database Software.

Semester II No. of Practicals – 10	
	Title of Experiment/ Practical
1	Simple Queries
2	Nested Queries
3	Queries using aggregate functions
4	Queries using Views
5	Cursors
6	Exception Handling
7	Stored Function
8	Triggers
9	Case Study(1)
10	Case Studies (2)