Thomas Write Rule in DBMS
Timestamp Ordering Protocol states that if Ri(X) and W;j(X) are conflicting

operations then R; (X) is processed before Wj(X) if and only if TS(Ti) < TS(Tj).

Whenever a schedule does not follow serializablity order according to the
Timestamp, user generally rejects it and rollback the Transaction. Some
operations on the other hand are harmless and can be allowed.

Thomas Write Rule allows such operations and is a modification on the Basic
Timestamp Ordering protocol. In Thomas Write Rule user ignore outdated
writes. Moreover, of all the Concurrency Protocols have been
discussed, Concurrency is imposed on Schedules which are Conflict
Serializable, in Thomas Write Rule, the most important improvement is user

can achieve Concurrency with View Serializable schedules.

Thomas Write Rule -
Thomas Write Rule does not enforce Conflict Serializablity but rejects fewer
Write Operations by modifying the check Operations for W_item/(X)

1. If R_TS(X) > TS(T), then abort and rollback T and reject the operation.

2. fW_TS(X) > TS(T), then don’t execute the Write Operation and continue
processing. This is a case of Outdated or Obsolete Writes. Remember,
outdated writes are ignored in Thomas Write Rule but a Transaction
following Basic protocol will abort such a Transaction.

3. If neither the condition in 1 or 2 occurs, then and only then execute the
W_item(X) operation of T and set W_TS(X) to TS(T)

Outdated Write Example -
The main update in Thomas Write Rule is ignoring the Obsolete Write
Operations. This is done because some transaction with timestamp greater
than TS(T) (i.e., a transaction after T in TS ordering) has already written the
value of X. Hence, logically user can ignore the Write(X) operation of T which
becomes obsolete. Let us see this through an example:

Suppose user has a schedule in which two transactions T; and T2. Now, TS(T2)
< TS(T1). This means T; arrived after T2 and hence has a larger TS value than
T2. This implies that serializablity of schedule allowed is T2 => T1 . Consider the

partial schedule given below:

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

2. W(A)
N T,— T, which is not allowed.

Ignore this Outdated Write
= . operation according to Thomas

Write Rule.

Allowed TS ordering T, — T,

Obsolete Writes are hence ignored in this rule which is in accordance to the
2nd protocol. It seems to be more logical as user skip an unnecessary procedure

of restarting the entire transaction. This protocol is just a modification to Basic

TO protocol.

Precedence / Wait-for Graph

Deadlocks

+ Adeadlock is an
impasse that may
result when two or

* Given a schedule, we
can detect deadlocks
which will happen in

more transactions this schedule using a

are waiting for locks ~ wait-for graph

to be released which ~ (WFG).

Precedence/Wait-For Graphs

s Precedence graph ~ » Wait-for Graph
+ Each transaction s a » Each transaction s 3
vertex vertex
¢ Arcs from TLto T2 ff s Arcsfrom T2 to T1 if

¢ T1 reads X before T2 + T1 read-lacks ¥ then
writes X T2 tries to write-lock

are held by each

other.

+ Forexample: T has a
lock on X and is waiting
foralockonY, and T2
has a lock on Yand is
waiting for a lock on X,

* T1 writes X before T2
reads X

o T1 wiites ¥ before T2
writes X

it

» T1 write-locks X then

T2 tries to read-lock
it

* T1 write-locks X then

T2 tries to write-lock
it

Deadlocks

A deadlock is an

impasse that may
result when two or
more transactions

* Given a schedule, we
can detect deadlocks
which will happen in
this schedule using a

Precedence/Wait-For Graphs

« Precedence graph « Wait-for Graph

+ Each transaction is a + Each transaction is a
vertex Vertay
+ Arcs from T1to T2 if « Arcs from T2 to T1 if

are waiting for locks

to be released which

are held by each

other.

* For example: T1 has a
lock on X and is waiting
foralockonY, and T2

has alock on Y and is
waiting for a lock on X.

wait-for graph
(WFG).

s T1 reads X before T2
writes X

* T1 writes X before T2
reads X

s T1 writes X before T2
wirites X

* T1 read-locks X then
T2 tries to write-lock
it

+ T1 write-locks X then
T2 tries to read-lock
it

+ T1 write-locks X then
T2 tries to write-lock
it

Example Example
@ @)
T1 Read(X) _/ T1 Read(X) L/
T2 Read(Y) } 3 T2 Read(Y)
T1 Write(X) .@) .@5)“ T1 Write(X) (TEJ SE\
T2 Read(X) - - T2 Read(X) - ’
T3 Read(2) Wait for graph T3 Read(2) Wait for graph
T3 Write(Z) T3 Write(Z)
T1 Read(Y) T1 T1 Read(Y)
13 Re_ad{();) [(" . 3 F'.ead{):) | /d ~ ’F\
T1 Write(Y -~ I T1 Write(Y
(2 (1) ﬁz\/ @)
Precedence graph Precedence graph
Example Example
[TN
T1 Read(X) read-locks(X) E{/’\T_!j T1 Read(X) read-locks(X) /\11;
T2 Read(Y) read-locks(Y) N T2 Read(Y) read-locks(Y)]
T1 Write(X) write-lock(X) 6’5\) 6’3\ T1 write(X) write-lock(X) ﬁ?} /T;i)
T2 Read(X) tries read-lock(X) - . 5 T2 Read(X) tries read-lock(X) -
T3 Read(2) Walt for graph T3 Read(Z) read-lock(2) Wailfor graph
T3 Write(Z) . T3 Write(Z) write- Iock()
T1 Read(Y) (T1 T1 Read(Y) read-lock(Y
T3 Read(X) i/‘\ <\ T3 Read(X) tries read- IO{k[X] /\ ’)\
T1 Write(Y) A / N T1 Write(Y) /
l.\:|'2,. IJ 3}.' L\T2 L\TE/I
Precedence graph Precedence graph
Example Deadlock Prevention
[

T1 Read(X) read-locks(X) /\le\

T2 Read(Y) read-locks(Y)

T1 Write(X) write-lock(X) ﬁ-ﬂ/ (Tih
T2 Read(X) tries read-lock(X) S

T3 Read(Z) read-lock(2) Wai for graph
T3 Write(Z) write-lock(Z)
T1 Read(Y) read-lock(Y) 1)
T3 Read(X) tries read-lock(X)\
T1 Write(Y) tries write- Icu[k[‘r)

\TQ \TS |

Precedence graph

» Deadlocks can arise
with 2PL
+ Deadlock is less of a
problem than an
inconsistent DB
+ We can detect and
recover from deadlock

+ Tt would be nice to
avoid it altogether

« Conservative 2PL

« All locks must be
acquired before the
transaction starts

« Hard to predict what
locks are neaded

« Low 'lock utilisation” -
transactions can hold
on to locks for a long
time, but not use
them much

