Thomas Write Rule in DBMS
Timestamp Ordering Protocol states that if Ri(X) and W;j(X) are conflicting

operations then R; (X) is processed before Wj(X) if and only if TS(Ti) < TS(Tj).

Whenever a schedule does not follow serializablity order according to the
Timestamp, user generally rejects it and rollback the Transaction. Some
operations on the other hand are harmless and can be allowed.

Thomas Write Rule allows such operations and is a modification on the Basic
Timestamp Ordering protocol. In Thomas Write Rule user ignore outdated
writes. Moreover, of all the Concurrency Protocols have been
discussed, Concurrency is imposed on Schedules which are Conflict
Serializable, in Thomas Write Rule, the most important improvement is user

can achieve Concurrency with View Serializable schedules.

Thomas Write Rule -
Thomas Write Rule does not enforce Conflict Serializablity but rejects fewer
Write Operations by modifying the check Operations for W_item/(X)

1. If R_TS(X) > TS(T), then abort and rollback T and reject the operation.

2. fW_TS(X) > TS(T), then don’t execute the Write Operation and continue
processing. This is a case of Outdated or Obsolete Writes. Remember,
outdated writes are ignored in Thomas Write Rule but a Transaction
following Basic protocol will abort such a Transaction.

3. If neither the condition in 1 or 2 occurs, then and only then execute the
W_item(X) operation of T and set W_TS(X) to TS(T)

Outdated Write Example -
The main update in Thomas Write Rule is ignoring the Obsolete Write
Operations. This is done because some transaction with timestamp greater
than TS(T) (i.e., a transaction after T in TS ordering) has already written the
value of X. Hence, logically user can ignore the Write(X) operation of T which
becomes obsolete. Let us see this through an example:

Suppose user has a schedule in which two transactions T; and T2. Now, TS(T2)
< TS(T1). This means T; arrived after T2 and hence has a larger TS value than
T2. This implies that serializablity of schedule allowed is T2 => T1 . Consider the

partial schedule given below:
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2. W(A)
N T,— T, which is not allowed.

Ignore this Outdated Write
= . operation according to Thomas

Write Rule.

Allowed TS ordering T, — T,

Obsolete Writes are hence ignored in this rule which is in accordance to the
2nd protocol. It seems to be more logical as user skip an unnecessary procedure

of restarting the entire transaction. This protocol is just a modification to Basic

TO protocol.
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