

Anekant Education Society’s

Tuljaram Chaturchand College

of Arts, Science & Commerce, Baramati

(AUTONOMOUS)

Affiliated

Savitribai Phule Pune University, Pune

Department Of Computer Science

F.Y.B.Sc.(Computer Science)

 Lab Course I (CSCO-1103) – Basics of ‘C’

 Lab Course II (CSCO -1104) – DBMS - I

(Semester I)

 20 - 20

 Name__

 Roll No. __________________ Division_________________

Anekant Education Society‟s

 Tuljaram Chaturchand College of

 Arts, Science & Commerce Baramati(Autonomous)

DEPARTMENT OF COMPUTER SCIENCE

Computer Practical Journal

Paper III: CSCO – 1103 Lab Course on Basic C

- CERTIFICATE -

University Seat No. Date :

This is to certify that Mr./ Miss. / Smt.

 has satisfactorily completed the course in practical as

prescribed by the University of Pune for the F.Y.B.Sc.(Computer Science-Lab

 Course I in the Year 2019 – 2020

 In-Charge Internal Examiner External Examiner Head

(Practical) Computer Science

Index

Sr.

No.
Assignment Name Date Remark

1 1 To demonstrate the use of data types, simple

2 operators and expressions.

2 Assignment to demonstrate decision making

 statements (if and if-else, nested structures)

3 Assignment to demonstrate decision making

statements (switch - case)

4 Assignment to demonstrate use of simple loops

5 Assignment to demonstrate use of nested loops

6 Assignment to demonstrate menu driven

 programs.

7 Assignment to demonstrate writing C programs

in modular way (use of user defined functions)

8 Assignment to demonstrate recursive functions.

9 Assignment to demonstrate use of arrays (1-d

 arrays) and functions

10 Assignment to demonstrate use of arrays (1-d

 arrays) and functions

Assignment:1

To demonstrate the use of data types, simple operators and expressions

1. Data type Table

Data Data
Format

C Data
Type

C Variable
Declaration

Input Statement Output
Statement

quantity

month

credit-

card

number

Numeric int

Short

int

long int

int quantity;

short month;

long ccno;

scanf(“%d”,&quantity);
scanf(“%d”,&month);

scanf(“%ld”, &ccno);

printf(“The

quantity is %d”,

quantity);

printf(“The credit

card number is
%ld, ccno);

Price Real float

double

float price;

const double

pi=3.141593;

scanf(“%f”,&price);
printf(“The price
is

%5.2f”, price);

Grade character char grade; scanf(“%c”,&grade) printf(“The grade

is %c”,grade);

2. Expression Examples

Expression C expression

Increment by a 3 a = a + 3

Decrement b by 1 b = b-1 or b--

2 a2 + 5 b/2 2*a*a + 5*b/2

7/13(x- 5) (float)7/13*(x-5)

5% of 56 (float)5/100*56

n is between 12 to 70 n>=12 && n<=70

¾r2h

Pi*r*r*h

n is not divisible by 7 n % 7 != 0

n is even

n%2==0

ch is an alphabet ch>=‟A‟ && ch<=‟Z‟ || ch>=‟a‟ && ch<=‟z‟

Note: The operators in the above expressions will be executed according to precedence and
associatively rules of operators.

Follow the following guidelines

a. Type the sample program save it pnr.c
 Compile the program using gcc compiler

 available in Linux(red hat) gcc pnr.c

A executable file a.out is created by the compiler in current directory. The

program can be executed by typing name of the file as follows giving the path.

./a.out

Write Programs to solve the following problems

Set – A

1. Write a C program to display message “Hello ! Welcome To C” using printf function.

2. Write a C program to demonstrate declaration of variables and functions.

3. Write a C program for addition, substraction, multiplication and division.

4. Write a C program to accept principal sum, rate of interest and number of years. Compute

 simple interest.

Set – B
1. Write a C program to accept three dimensions length(l),breadth(b)and height(h) of a cuboid and

 print surface area and volume (Hint: Surface area = 2(lb+lh+bh),volume =lbh)

2. Write a C program to calculate area of circle, circumference of circle (2*PI*r), area of
 rectgangle.
3. Write a C program to accept marks of five subjects and display percentage.
4. Write a C program to accept empid , basic salary calculate total salary including tax ,
 dearness allowance.
5. Write a C program to a cashier has currency notes of denomination 1, 5, 10. Accept
 the amount to be withdrawn from the user and print the total number of currency
 notes of each denomination the cashier will have to give.

 -------------------------- ---------------------------- -------------------------

 Signature of the Instructor Remark Date

Assignment:2

To demonstrate use of decision making statements such as if and if-else.

During problem solving, we come across situations when we have to choose one

of the alternative paths depending upon the result of some condition. Condition is

an expression evaluating to true or false. This is known as the Branching or

decision-making statement. Several forms of If and else constructs are used in C to

support decision-making.

1) if statements 2) if… else

if (condition) if(condition)

{ {

Statement; statement;

} } else

{

 Statement;

}

Write Programs to solve the following problems

Set – A
1. Write a C program to check whether number is positive and negative.

2. Write a C program to check whether number is even or odd.

3. Write a C program to check whether number is divisible by 5 and 7.
4. Write a C program to Check year is leap year or not .

Set – B
1. Write a C program to Check whether character is a digit or a character or other

 symbol Also check character is in lowercase or uppercase (ASCII value of digit is bet 48 to 58,

a z

 is 97 to 123, A Z 65 to 96)

2. Write a C program to Accept marks of three subjects and find the total marks, average.

Display

 class obtained

3. Write a C program to Calculate roots of quadratic equation .

 -------------------------- ---------------------------- -------------------------

 Signature of the Instructor Remark Date

Assignment:3

To demonstrate decision making statements (switch case)

The control statement that allows us to make a decision from the number of choices is

called a switch-case statement. It is a multi-way decision making statement.

Switch syntax:

switch(expression)

{

case value 1:statement 1;

 break;

case value 2:statement 2;

break;

case value n:statement n;

break;

 default : default statement;

 break;

 }

Write Programs to solve the following problems

Set – A
1. Write a C program to Display selected number or option
2. Write a c program Accept two integers and perform arithmetic operations

Set – B
1. Accept single digit and display it in words.
2. Write a c program having a menu with the following options and corresponding
 actions 1. Area of circle 2.Area of Rectangle 3. Area of triangle .

 -------------------------- ---------------------------- -------------------------

 Signature of the Instructor Remark Date

Assignment:4

To demonstrate use of simple loops.

We need to perform certain actions repeatedly for a fixed number of

times or till some condition holds true. These repetitive operations are done using

loop control statements. The types of loop structures supported in C are

1)while statement 2)do-while statement 3)for statement

while(condition) do{ for(expr1;expr2;expr3)

{statement 1; statement 1; {

Statement 2; Statement 2; Statement1;

} }while(condition); Statement2;

 }

Write Programs to solve the following problems

Set – A
1. Write a C program to Accept a number and reverse it . (if input 978 o/p 879)
2. Write a C program to Accept a number & find sum of digits
3. Write a C program to Accept a number & check whether it is a Armstrong
 Number (sum of cube of its digit = number itself)
4. Write a c program to accept characters from the keyboard till the use enter EOF
 (ctrl+Z) and count the number of vowels ,spaces and line in the text.

Set – B
1. Write a C program to accept a number and display its digits in Words.
 (Input : 572 output: FIVE SEVEN TWO)
2. Write a C program to accept a number and calculate factorial of given number.
3. Write a C program to accept a number and check whether number is Perfect or
not.
 (Hint : sum of factors = number itself)

4. Write a C program to find Fibonacci series i.e. 1 1 2 3 5 8….
 (Hint : sum of previous two numbers is the next term)

5. Write a C program to accept an integer and check if it is prime or not.

 -------------------------- ---------------------------- -------------------------

 Signature of the Instructor Remark Date

Assignment:5

To demonstrate use of nested loops

Nested loop means a loop that is contained within another loop. Nesting can be done

upto any levels. However the inner loop has to be completely enclosed in the outer loop.

No overlapping of loops is allowed.

let to nest any loop within another. For example, we can have a for loop inside a while or

do while or a while loop inside a for.

Write C programs for the following problems.

Set – A
1. The Sample program 1 displays n lines of the following triangle. Type the program and

execute it

 for different values of n.

1
1 2
1 2 3
1 2 3 4

2. Modify the sample program 1 to display n lines of the Floyd‟s triangle as follows (here n=4).

1
2 3
4 5 6
7 8 9 10

3. Write a C program to calculate sum of first n terms of series 1+3+5+…….

4. Write a C program to calculate sum of first n terms of series X + 3x + 5x +7x + ……

Set – B

1. Write a C to accept a number x and integer n and calculate the sum of first n terms of series.

1/x + 2/x2 + 3/x3 +….

2. Write a C program to display all Armstrong numbers between 1 to 500.

3. Write a C program to Display following output :

 A B C D

E F G

 H I

 J

4. Write a C program to display multiplication table from 2 to 9.

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

Assignment:6

 To demonstrate menu driven programs and use of standard library functions

A function is a named sub-module of a program, which performs a
specific, well- defined task. It can accept information from the calling function in
the form of arguments and return only 1 value. C provides a rich library of
standard functions. We will explore some such function libraries and use these
functions in our programs.

ctype.h : contains function prototypes for performing various operations on
characters.Some commonly used functions are listed below.

Function Name Purpose Example

Isalpha Check whether a character is a alphabet if (isalpha(ch))

Isalnum Check whether a character is alphanumeric if (isalnum(ch))

Isdigit Check whether a character is a digit if (isdigit(ch))

Isspace Check whether a character is a space if (isspace(ch))

Ispunct Check whether a character is a punctuation

Symbol

if (ispunct(ch))

Isupper
Check whether a character is uppercase

alphabet if (isupper(ch))

Islower
Check whether a character is lowercase

alphabet if (isupper(ch))

Toupper Converts a character to uppercase ch = toupper(ch)

Tolower Converts a character to lowercase ch = tolower(ch)

math.h : This contains function prototypes for performing various mathematical
operations on numeric data. Some commonly used functions are listed below.

Function Name Purpose Example

Cos Cosine
a*a+b*b –

2*a*b*cos(abangle)

exp(double x)
exponential function, computes ex

exp(x)

Log natural logarithm c= log(x)

log10 base-10 logarithm y=log10(x)

pow(x,y) compute a value taken to an

exponent, xy

y = 3*pow(x , 10)

Sin Sine z= sin(x) / x

Sqrt square root delta=sqrt(b*b – 4*a*c)

Set A

1. Write a menu driven program to perform the following operations on a character
 type variable.

a. Check if it is an alphabet

b. Check if it is a digit.

c. Check if it is lowercase.

d. Check if it is uppercase.

e. Convert it to uppercase.

2. Write a menu driven program to perform the following operations till the user
 selects Exit. Accept appropriate data for each option. Use standard library
 functions from math.h
 i. Sin ii. Cosine iii. log iv. ex
 v. Square Root vi. Exit

Set B

1. Accept two complex numbers from the user (real part, imaginary part).

2. Write a menu driven program to perform the following operations till the user
 selects Exit.

i. Add ii. Substract iii. Multiply iv. Exit

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

Assignment:7

To demonstrate writing C programs in modular way (use of user defined
functions

You have already used standard library functions. C allows to write and use user
defined functions. Every program has a function named main. In main you can call
some functions which in turn can call other functions.

The following table gives the syntax required to write and use functions

Sr.
No

Actions
involving
functions

Syntax Example

1. Function declaration
returntype function(type arg1,

type arg2 …);
void display();

int sum(int x, int y);

2. Function definition
returntype function(type arg1,

type arg2 …)

{

/* statements*/

}

float calcarea (float r)

{

float area = Pi *r*r
; return area;

}

3. Function call function(arguments); variable
= function(arguments);

display();

ans =
calcarea(radius);

Set A

1. Write a C program to accept two numbers and Find maximum number between
two numbers using function.

2. Write a C program for swapping of two numbers using function.

Set B

1. Write a C program to Calculate factorial using function.

2. Write a C program to accept two nos.+,/,*,%using function.

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

 Assignment: 8

To demonstrate Recursion

Recursion is a process by which a function calls itself either directly or indirectly.

The points to be remembered while writing recursive functions

i. Each time the function is called recursively it must be closer to the solution.

ii. There must be some terminating condition, which will stop recursion.

iii. Usually the function contains an if –else branching statement where one branch

makes recursive call while other branch has non-recursive terminating condition

Set A

1. Write a recursive C function to calculate the sum of digits of a number. Use this
 function in main to accept a number and print sum of its digits.

2. Write a recursive C function to calculate the GCD of two numbers. Use

 this function in main. The GCD is calculated as:

 gcd (a , b) = a if b = 0

 gcd (b, a mod b) otherwise

Set B

1. Write a recursive C function to calculate xy. (Do not use standard library function)

 2. Write a recursive function to calculate the sum of digits of a number till you get a

 single digit number. Example: 961 -> 16 -> 5. (Note: Do not use a loop)

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

Assignment:9

To demonstrate use of 1-D arrays and functions.

An array is a collection of data items of the same data type referred to by a common
name. Each element of the array is accessed by an index or subscript. Hence, it is
also called a subscripted variable.

1. How to declare one-dimensional array Syntax:-Data-type arrary_name[size];

 Example: int mat1 [10];

Set A

1. Write a C program to Accept elements for an array & display elements of an

Array.

2. Write a C program to Display even numbers from an array

Set B

1. Write a C program to Find smallest & largest number from an Array

2. Write a function, which accepts an integer array and an integer as parameters

and counts the occurrences of the number in the array.

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

Assignment:10

To demonstrate use of 2-D arrays and functions.

How to declare two-dimensional array

 Syntax - Data-type arrary_name[size][size];

 Example:int mat1[10][10];

Accessing elements

Array_name [index1][index2] where index1is the row & index 2 is the column
location of an elements in the array.

Set A

1. Write a C program to Accept elements for an array and sort elements of an array

2. Write a C program to Accept elements for an array and Merge two

sorted arrays into a third array.

3. Write a C program for Addition of two matrices

Set B

1. Write a c program for multiplication of two matrices.

2. Write a C program to Transpose of a matrix .

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

Anekant Education Society‟s

 Tuljaram Chaturchand College of

 Arts, Science & Commerce Baramati(Autonomous)

DEPARTMENT OF COMPUTER SCIENCE

Computer Practical Journal

Paper IV: CSC – 1104 Lab Course on DBMS

- CERTIFICATE -

University Seat No. Date :

This is to certify that Mr./ Miss. / Smt.

 has satisfactorily completed the course in practical as

prescribed by the University of Pune for the F.Y.B.Sc.(Computer Science-Lab

 Course II in the Year 2019 – 2020

 In-Charge Internal Examiner External Examiner Head

(Practical) Computer Science

20

Index

Sr.No. Title of Experiment/ Practical Date Sign

1
Create simple tables , with only the primary key
Constraint

2 Create more than one table with integrity constraint

3
Create more than one table, with referential integrity
constraint.

4 Drop a table from database, Alter the table.

5 Insert/Update/Delete statements.

6
Query for the tables using simple form of Select
Statement

7
Query solving for table operations(Aggregate
function)

8
Nested Query solving for table operations(Union,
Intersect, Except)

9
Nested Query solving for table operations(Set
membership,
Cardinality, Comparison)

10 Small Case Studies.

21

Assignment: 01

Assignment to create simple tables, with only the primary key constraint

 (as a table level constraint & as a field level constraint include all data types)

PostgreSQL(pronounced as post-gress-Q-L) is an open source relational database

management system (DBMS) developed by a worldwide team of volunteers.

PostgreSQL is not controlled by any corporation or other private entity and the

source code is available free of charge. PostgreSQL runs on all major operating

systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris,

Tru64), and Windows. PostgreSQL supports a large part of the SQL standard and

offers many modern features including the Complex SQL queries, SQL Sub-selects,

Foreign keys, Trigger, Views, Transactions, Multiversion concurrency control

(MVCC) etc.

PostgreSQL supports a wide variety of built-in data types, and it also provides an

option to the users to add new data types to PostgreSQL. Table lists the data types

officially supported by PostgreSQL. Most data types supported by PostgreSQL are

directly derived from SQL standards.

Introduction to PostgreSQL CREATE DATABASE statement

 To create a new PostgreSQL database, you use CREATE

DATABASE statement as shown below:

CREATE DATABASE db_name;

 Once a database is no longer needed, you can delete it by using the DROP
DATABASE statement.
The following illustrates the syntax of the DROP DATABASE statement:

DROP DATABASE [IF EXISTS] name;

 To delete a database:
o Specify the name of the database that you want to delete after

the DROP DATABASE clause.
o Use IF EXISTS to prevent an error from removing a non-existent

database. PostgreSQL will issue a notice instead.

 The DROP DATABASE statement deletes catalog entries and data directory
permanently. This action cannot be undone so you have to use it with caution.
A table is a database object that holds data. A table must have unique name, via

which it can be referred. A table is made up of columns. Each column in the table

must be given a unique name within that table. Each column will also have size, a

data-type and an optional constraint. The following table contains PostgreSQL

supported data types for your reference:

22

Category Numeric

Name
Storage

size
Description Range

Integer 4 Bytes
Small range
integer

-32768 to 32768

Numeric Variable
User specified
precision,exact

up to 131072 digits
before the decimal
point; up to 16383
digits after the
decimal point

smallint, int2 2-bytes A signed integer -32768 to +32767

Bigint/ int8 8 bytes
large-range
integer

-
92233720368547758
08 to
92233720368547758
07

Real/Float 4 Bytes
Variable
presion,inexact

6 Decimal Digit
precision

Serial 4Bytes
Autoincrement
integer

1 to 2147483647

Category Character

Name Description

Character(n) A fixed n-length character string

Char(n) A fixed n-length character string

Character varying (n) Variable with limit

Varchar(n) Variable length with limit

Text Variable character string

Category Currency

Name
Storage

size
Description Range

Money 8 Bytes Currency amount

-
92233720368547758
.08 to
+9223372036854775
8.07

Category Binary

Name Description

bit(n)
Fixed-length bit string Where size is the
length of the bit string.

varbit(size)
bit varying(size)

Variable-length bit string where size is the
length of the bit string.

23

Category Date/Time

Name
Storag
e size

Description Range

timestamp [(p)]
[without time zone]

8 bytes
both date and time
(no time zone)

4713 BC to
294276 AD

timestamp [(p)] with
time zone

8 bytes
both date and time,
with time zone

4713 BC to
294276 AD

Date 4 bytes
date (no time of
day)

4713 BC to
5874897 AD

time[(p)][without
time zone]

8 bytes
time of day (no
date)

00:00:00 to
24:00:00

time[(p)] with time
zone

12
bytes

times of day only,
with time zone

00:00:00+1459 to
24:00:00-1459

interval[fields][(p)]
12
bytes

time interval
-178000000years
to

 178000000 years

Category Boolean

Name
Storage

size
Description

Boolean,bool 1 byte State true or false

Syntax for table creation :

Create table tablename (attribute list);

Attribute list : ([attribute name data type optional constraint] , ……….. .)

Constraints can be defined as either of the following :

Name Description Example

Column
level

When data constraint is defined only
with respect to one column & hence
defined after the column definition, it
is called as column level constraint.

Create table tablename
 (attribute1 datatype primary
key, attribute2 datatype
constraint constraint-
name,……);

Table
Level

When data constraint spans across

multiple columns & hence defined

after defining all the table columns

when creating or altering a table

structure, it is called as table level

constraint

Create table tablename

 (attribute1 datatype ,

attribute2 datatype2 ,

……, constraint pkey

primary key (attribute1,

atrribute2));

24

 Set A:

1. Create a table with details as given below:

Table Name Game

Columns Column Name Column Data Type Constraints

1 G_Code Integer Primary Key

2 G_name Varchar(50)

3 G_tournment Date

4 G_disc Varchar(100)

Table level Constraint

2. Create a table with details as given below

Table Name Student

Columns Column Name Column Data Type Constraints

1 Roll_no Integer Primary Key

2 Class Varchar(20)

3 Weight Numeric(6,2)

4 Height Numeric(6,2)

Table level Constraint Roll_no & Class as Primary key

3.Create a table with details as given below

Table Name Project

Columns Column Name Column Data Type Constraints

1 Project_id Integer Primary Key

2 Project_name Varchar(20)

25

3 P_disc Text

4 Status Boolean

Table level Constraint

4.Create a table with details as given below:

Table Name Donar

Columns Column Name Column Data Type Constraints

1 D_no Integer Primary Key

2 D_name Varchar(20)

3 Blood_grp Char(6)

4 Last_date Date

Table level Constraint

 Set B :

1. Create a table with details as given below:

Table Name Game

Columns Column Name Column Data Type Constraints

1 G_no Integer Primary Key

2 G_name Varchar(20)

3 No_of_player Integer

4 Coach Name Varchar(50)

Table level Constraint

 2.Create a table with details as given below:

26

Table Name Musician

Columns Column Name Column Data Type Constraints

1 M_no Integer

2 M_name Varchar(50)

3 Age Interger

4 M_address Varchar(100)

Table level Constraint Primary Key

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

27

Assignment: 02

To create more than one table, with referential integrity constraint, primary key

constraint.

The following is the list of constraints that can be defined for enforcing the referential

integrity constraint.

Constraint Use Syntax & Example

Primary key
Designates a column or
combination of columns
as primary key

PRIMARY
KEY(columnname,columnnam
e)

Foreign key
designates a column or grouping
of columns as a foreign key with
a table constraint

FOREIGN KEY

(columnname,columnname)

References

Identifies the primary key that is
referenced by a foreign key. If
only parent table name is
specified it automatically
references primary key of parent
table

columnname datatype
REFERENCES
tablename[columnname]

On delete
Cascade

The referential integrity is
maintained by automatically
removing dependent foreign key
values when primary key is
deleted

Columnname datatype
REFERENCES tablename
[columnname] [ON DELETE
CASCADE]

On update set
null

If set, makes the foreign key
column NULL, whenever there
is a change in the primary key
value of the referred Table

Constraint name foreign key
column- name references
referred- table(column-name)
on update set null

 Set A :

1. Create the following tables :

Table Name Property

Columns Column Name Column Data Type Constraints

1 Pnumber Integer Primary key

2 Description varchar (50) Not null

3
Area

Char(10)

Table Name Owner

Columns Column Name Column Data Type Constraints

1 Owner-name Varchar(50) Primary key

2 Address varchar (50)

3 Phoneno Integer

 Relationship is one-many between Owner & Property. Define reference keys.

28

2. Create the following tables :

Table Name Hospital

Columns Column Name Column Data Type Constraints

1 Hno Integer Primary key

2 Name varchar (50) Not null

3 City Char(10)

Table Name Doctor

Columns Column Name Column Data Type Constraints

1 Dno Integer Primary key

2 Dname varchar (50)

3 City Char(10)

 Relationship is many-many between Hospital & Doctor.

3. Create the following tables:

Table Name Patient

Columns Column Name Column Data Type Constraints

1 Pno Integer Primary key

2 Name varchar (50) Not null

3 Address Varchar(50)

Table Name Bed

Coloumn Coloumn Name Coloumn Data Type Constraint

1 Bedno Integer Primary key

2 Roomno Integer

3 Discription Varrchar(50)

Relationship is one–to-one relationship between patient & bed.

 Set B :

1 Create the following tables according mapping cardinality given below.

I. Country(Con-code, Name, Capital) Population(Pop-code, Population)

 Country and Population are related with one to one relationship.

29

II. Employee (empno, empname, salary, comm.., desg)
 Department (deptno, deptname, location)

Employee and Department are related with many to one relationship.

III. Game(Gno, Gname, No. of Player, Coachname, Captain)
 Player(Pno, Pname)

Game and Player are related with many to many relationships.

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

30

Assignment: 03

To create one or more tables with Check constraint , Unique constraint, Not null constraint,

in addition to the first two constraints (PK & FK)

The following is the list of additional integrity constraints.

Constraint Use Syntax & Example

Null Specifies that the column
can contain null values

Create table Client_Master

(Client_no text Not Null,

Name text Not Null,

Addr text Null,

Balance Integer);

Not Null Specifies that the column
can contain not null
values

Create table client_Master

(Client_no text Not Null,

 Name text Not Null);

Unique Forces the column to
have unique values

Create table client_Master

(Client_no text Unique,

Name text Not Null);

Check Specifies a condition that
each row in the table
must satisfy.

Create table client_Master

(Client_no text primary key,

Name text,

Constraint name_chk
check(Name=upper(Name)));

 Set A :

1. Create a table with details as given below

Table Name Machine

Column Name Data Type Constraints

Machine_id Integer Primary key

Machine_name varchar (50) NOT NULL, uppercase

Machine_type varchar(10)
Type in („drilling‟, „Milling‟, „Lathe‟,
„Turning‟, „Grinding‟)

Machine_price Float Greater than Zero

Machine_cost Float

Table level constraint Machine_cost less than Machine_price

31

2.Create a table with details as given below

Table Name Employee

Column Name Data Type Constraints

Emp_id Integer Primary key

Emp_name Varchar (50) NOT NULL, uppercase

Emp_desg Varchar(10) Designation in(„Manager‟, „staff‟, worker‟)

Emp_sal Float Greater than zero

Emp_uid Text Unique

Table level constraint Emp_uid not equal to Empl_id

Set B :

 Table Name Department

Columns Column Name Column Data Type Constraints

1 Dept_id Integer Primary key

2 Dept_name varchar (50) NOT NULL, uppercase

3
Dept_type

varchar(20)
Type in („drilling‟, „milling‟,
„lathe‟, „turning‟, „grinding‟)

4 Dept_budget Integer Greater than zero

5
Dept_expenditur
e

Float

Table level constraint Dept_expenditure less than Dept_budget

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

32

Assignment: 04

To drop a table from the database, to alter the schema of a table in the Database.

The Drop & Alter DDL statements:

Drop:-Deletes an object (table/view/constraint)schema from the database.

Drop object-type Object-name; e.g. Drop table employee;

Alter:- ALTER TABLE command of SQL is used to modify the structure of the table. It can

be used for following purposes :

a) Adding new column b) Modifying existing columns

c) Add an integrity constraint d) To refine a column

Alter table tablename Add (new columnname datatype(size), new columnname
datatype(size)…);

 Alter table emp(add primary key(eno));

 Alter table student(add constraint city_ chk check city in („pune‟, „mumbai‟));

Solve the following

Set A :

1. Remove employee table from your database. Create table employee (eno,

ename, sal). Add designation column in the employee table with values restricted to

a set of values.

2. Remove student table from your database. Create table student (student_no,

sname, date_of_birth). Add new column into student relation named address as a

text data type with NOT NULL integrity constraint and a column phone of data type

integer.

3. Consider the project relation created in the assignment 02. Add a constraint

that the project name should always start with the letter „R‟

4. Consider the relation hospital created in assignment 12. Add a column

hbudget of type int , with the constraint that budget of any hospital should always >

50000.

33

Set B :

1. Consider the relation Employee created in assignment 03. Add a column

join_date of type Date , with the constraint that joining date of any employee should

always after 2002.

2. Consider the relation Department created in assignment 03. Add a column

Dept_loc of type text , with the constraint that department location belongs to either

Delhi or Mumbai or Bangalore.

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

34

Assignment: 05

Assignment to insert / update / delete records using tables created in previous

assignments. (Use Si

(Use simple forms of insert / Update / Delete statements)

Insert Syntax:

Insert into tablename values(list of column values);

e.g.Insert into emp values(1,‟joshi‟,4000,‟pune);

Update Syntax:

Update tablename Set Columnname = Value where condition;

e.g. Update emp set sal = sal+1000 where eno =1;

 Delete Syntax:

Delete from table_name where condition;

 e.g. Delete from emp ;

 Delete from emp where eno = 1;

Solve the following.

Set A :
1. Create the following tables (primary keys are underlined.).

Property(pno,description,area) Owner(oname,address,phone)

An owner can have one or more properties, but a property belongs to exactly one owner.

Create the relations accordingly, so that the relationship is handled properly and the relations

are in normalized form (3NF).

a. Insert two records into owner table.

b. Insert 2 property records for each owner .

c. Update phone no of “Mr. Nene” to 9890278008

d. Delete all properties from “Pune” owned by “ Mr. Joshi”

35

2 . Create the following tables (primary keys are underlined.).

Emp(eno,ename,designation,sal)

Dept(dno,dname,dloc)

There exists a one-to-many relationship between emp & dept. Create the Relations

accordingly, so that the relationship is handled properly and the relations are in normalized

form (3NF).

a. Insert 5 records into department table

b. Insert 2 employee records for each department.

c. Increase salary of “managers” by 15%;

d. Delete all employees of deparment 30;

e. Delete all employees who are working as a “clerk”

f. Change location of department 20 to „KOLKATA‟

 3 . Create the following tables (primary keys are underlined.).

Sales_order(s_order_no,s_order_date) Client(client_no, name, address)

A clinet can give one or more sales_orders , but a sales_order belongs to exactly one client.

Create the Relations accordingly, so that the relationship is handled properly and the relations

are in normalized form (3NF).

a. Insert 2 client records into client table

b. Insert 3 sales records for each client

c. change order date of client_no ‟C004‟ to 12/4/08

d. Delete all sale records having order date before 10th feb. 08

e. Delete the record of client “Joshi”

Set B :

Consider the tables created in assignments 1,2,3,4 type and execute the below statements

for these tables.

Write the output of each statement & justify your answer

1. INSERT INTO sales_order(s_order_no,s_order_date,client_no)

 VALUES („A2100‟, now() ,‟C40014‟);

2. INSERT INTO client_master Values („A2100‟,‟NAVEEN‟, ‟Natrajapt‟,

 ‟pune_nagarroad‟ , ‟Pune‟,40014);

36

3. 3. Insert into client_master values

 („A2100‟,‟NAVEEN‟,NULL,‟pune_nagar road‟,‟pune‟,40014);

4. UPDATE emp SET netsal= net_sal_basic_sal*0.15;

5. UPDATE student SET name=‟SONALI‟,address=‟Jayraj apartment‟

 WHERE stud_id=104 ;

6. DELETE from emp;

7. DELETE from emp WHERE net_sal <1000;

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

37

Assignment: 06

Assignment to query the tables using simple form of Select statement

Syntax:

select <attribute- list> from <relation- list> [where<condition>[group by <attribute list>

[having <condition>] order by<attribute list>]];

e.g.- Select * from emp;

- Select eno name from emp where sal > 4000 order by eno;

- Select sum(sal) from emp group by dno having sum(sal)> 100000;

The aggregate functions supported by as following

Name Description Usage Example

Sum()

Get
 s the su Total of the values of the
 specified attribute.

Sum(attribute-
name)

Select sum(sal) from

emp;

Select dno, sum(sal)

from emp group by
dno;

Count() Gives the count of members
in the Group

Count(attribute);

Count(*)

Select count(*) from

emp;

Select count(*) from

emp where sal >

5000;

Max()
Gives the maximum value for
an attribute, from a group of
members

Max(attribute)

Select max(sal) from
emp; Select dno,
max(sal) from emp
group by dno having
count(*)>10;

Min()
Gives the minimum value for
an attribute, from a group of
Members

Min(attribute)

Select min(sal) from
emp;

 Select dno, min(sal)

from emp group by

dno having min(sal)
>100;

Avg()
Gives the average value for
an attribute, from a group of
Members

Avg(attribute)

Select avg(sal) from
emp;
Select dno, avg(sal)
from emp group by
dno having count(*)
>10;

38

As part of the self activity in exercise you have created a table employee with attributes empno,

name, address, salary and deptno. You have also inserted atleast 10 records into the same.

Set A:

Create the following relations person & area

Consider the relations Person (pnumber, pname, birthdate, income), Area(aname,area_type).

An area can have one or more person living in it , but a person belongs to exactly one area. The

attribute „area_type‟ can have values as either urban or rural.

Create the Relations accordingly, so that the relationship is handled properly and the

relations are in normalized form (3NF).

Assume appropriate data types for all the attributes. Add any new attributes as required,

depending on the queries. Insert sufficient number of records in the relations / tables with

appropriate values as suggested by some of the queries.

Write select queries for following business tasks and execute them.

 1.List the names of all people living in „Urban‟ area.

 2.List details of all people whose names start with the alphabet „C‟

3. List the names of all people whose birthday falls in the month of March.

4.Give the count of people who are born on 12th June 1990

5.Give the count of people whose income is below < 5000.

6.Give the count of people whose income is between 10000 & 40000.

7.List the names of people with average income

8.List the sum of incomes of people living in „Pune‟

9.List the names of the areas having people with maximum income (duplicate areas

must be omitted in the result)

10.Give the count of people in each area.

11.List the details of people living in „Mumbai‟ and having income greater than 20000;

12.List the details pf people, sorted by person number

13.List the details of people, sorted by area, person name

14.List the minimum income of people.

15.Transfer all people living in „Pune‟ to „Mumbai‟.

16.Delete information of all people staying in „Urban‟ area.

Set B:

Execute following select queries & write the business task performed by each query.

1. Select * from emp;

2. Select empno, name from emp;

39

3. Select distinct deptno from emp;

4. Select * from emp where deptno =101;

5. Select * from emp where address = „Pune‟ and sal > 10000;

6. Select * from emp where address = „Pune‟ and salary between 10000 and

 30000 ;

7. Select * from emp where name like „_ _ _r%‟

8. Select * from emp where name like „P%‟ and „S%‟;

9. Select * from emp where salary = Null;

10. Select * from emp order by eno;

11. Select * from emp order by deptno, eno desc;

12. Select deptno as department, sum(salary) as total from emp group by

 deptno order by deptno;

13. Select deptno as department , count(eno) as total_emp from emp

 group by deptno having count(eno) > 4 order by deptno;

14. Select avg(salary) from emp;

15. Select max(salary),deptno from emp group by deptno having max(sal) >20000;

16. Select deptno, min(salary) from emp order by deptno;

17. Update emp set salary = salary + 0.5*salary where deptno =

 (select deptno from department where dname = „finance‟);

18. Update emp set deptno = (select deptno from department where dname

 = „finance‟) Where deptno = (select deptno from department where

 dname = „inventory‟);

19. Insert into emp_backup(eno,ename) values(select eno,ename from emp);

20. Delete from emp where deptno = (select deptno from department where

 dname=‟production‟);

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

40

Assignment: 07

Assignment to query table, using set operation (union, intersect)

SQL Set operations:

Name Description Syntax Example

Union

Returns the union of two
sets of values,eliminating
duplicates.

<select query>

Union

<select query>

Select cname from

depositor

Union

Select cname from

borrower;

Union all

Returns the union of

two sets of values,

retaining all duplicates.

<select query>

Union all

<select query>

Select cname from

depositor

Union all

Select cname from

borrower;

Intersect

Returns the intersection
of two

sets of values,
eliminating
duplicates

<select query>

intersect

<select query>

Select cname from

depositor

intersect

Select cname from

borrower;

Intersect all
Returns the intersection
of two sets of values,
retaining duplicates

<select query>
Intersect all

<select query>

Select cname from
depositor

Intersect all

Select cname from
borrower;

Except

Returns the difference
between two set of
values,
I.e returns all values from
set1, not contained in
set2.eliminates
duplicates

<select query>
except

<select query>

Select cname from
Depositor except

Select cname from

borrower;

Except all

Returns the difference
between two set of
values, i.e. returns all
values from set1, not
contained in set2
.Retains all
Duplicates

<select query>

Except all <select
query>

Select cname from

Depositor Except
all

Select cname from

borrower;

41

The relations participating in the SQL operations union, intersect & except must be

compatible the following two conditions must hold:

a) The relation r and must be of the samelarity. That is , they must

 have the same number of attributes.

b) The domains of the ith attribute of r and the ith attribute of s must be the same ,

 for all i.

Set A :

1.Create the following relations, for an investment firm

emp(emp-id ,emp-name, address, bdate)

Investor(inv-name , inv-no, inv-date, inv-amt)

An employee may invest in one or more investments; hence he can be an investor. But an

investor need not be an employee of the firm.

Create the Relations accordingly, so that the relationship is handled properly and the relations

are in normalized form (3NF). Assume appropriate data types for the attributes. Add any new

attributes, as required by the queries. Insert sufficient number of records in the relations /

tables with appropriate values as suggested by some of the queries.

Write the following queries & execute them.
1. List the distinct names of customers who are either employees, or investors or both.

2. List the names of customers who are either employees, or investors or both.

3. List the names of employees who are also investors.

4. List the names of employees who are not investors.

Set B:

1. Consider the following relations, non-teaching, teaching, and department.

One department can have one or more teaching & non-teaching staff, but a teaching or non-

teaching staff belongs to exactly one department. Hence dno is a foreign key in the both the

relations. Create these relations in your database .

Non-teaching (empno int primary key, name varchar(20), address varchar(20),

 salary int,dno references department)

Teaching(empno int primary key, name varchar(20), address varchar(20), salary

 int,dno references department)

Department(dno int primary key,dname)

42

Insert at least 10 records into both the relations.Type the following select queries &

write the output and the business task performed by each query

1. Select empno from non-teaching union select empno from teaching;

2. Select empno from non-teaching union all select empno from teaching;

3. Select name from non-teaching intersect select name from teaching;

4. Select name from non-teaching intersect all select name from teaching;

5. Select name from non-teaching except select name from teaching;

6. Select name from non-teaching except all select name from teaching;

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

43

Assignment: 08

Assignment to query tables using nested queries

A subquery is a select-from-where expression that is nested within another query.

Set membership
the „in‟ & „not in‟ connectivity tests for set membership &
absence of set membership respectively.

Set comparison

the < some, > some, <= some, >= some, = some, <> some are the

constructs allowed for comparison. = some is same as the „in‟
connectivity. <> some is not the same as the „not n‟i
connectivity. Similarly sql also provides < all, >all, <=all, >= all, <> all
comparisons. <>all is same as the „not in‟ construc.

Set cardinality

The „exists‟ construct returns thevalue true if the argument
subquery is nonempty. We can test for the non-existence of tuples
in a subquery by using the „not exists‟ construct.The „not exists‟
construct can also be used to simulate the set containment
operation (the super set). We can write “relation A contains
relation B” as “not exists (B except A)”.

The complete Syntax of select statement containing connectivity or Comparison

operators is as follows

select <attribute-list> from <relation-list>
 where <connectivity / comparison > { sub-query };

Set A :

1. Create the following relations :

Emp(eno,name,dno,salary) Project(pno,pname,control-dno,budget)

Each employee can work on one or more projects, and a project can have many employees

working in it. The number of hours worked on each project , by an employee also needs to

be stored. Create the Relations accordingly, so that the relationship is handled properly and

the relations are in normalized form (3NF). Assume appropriate data types for the

attributes. Add any new attributes , new relations as required by the queries. Insert

sufficient number of records in the relations / tables with appropriate values as suggested

by some of the queries.

Write the queries for following business tasks & execute them.

1. List the names of departments that controls projects whose budget is greater than

 20000.

2. List the names of projects, controlled by department No , whose budget is

 greater than atleast one project controlled by department No 1 0 1 .

44

2. List the details of the projects with second maximum budget

3. List the details of the projects with third maximum budget.

4. List the names of employees, working on some projects that employee

 number is working.

5. List the names of employees who do not work on any project that

 employee number 204 works on.

6. List the names of employees who do not work on any project controlled

 by „102‟ department

7. List the names of projects along with the controlling department name, for

 those projects which has at least one employees working on it.

8. List the names of employees who is worked for more than 10 hrs on

 At least one project controlled by „104‟ dept. list the names of employees,

 who are males , and earning the maximum salary in their department.

9. List the names of employees who work in the same department as „Clerk‟.

10. List the names of employees who do not live in Pune or Mumbai.

Set B :

1. Create the following relation in your database(primary keys underlined

Employee(ename, street, city)

 Works(ename, company-name, salary)

 Company(company-name, city)

 Manages(ename, manager-name)

An employee can work in one or more companies, a company can have one or more

employees working in it. Hence the relation „works‟ with keyattributes as ename,

company-name.

An employee manages one or more employees, but an employee is managed by exactly

one employee (a recursive relationship), hence the relation „manages‟ with key ename.

Insert sufficient number of records in the relations / tables with appropriate values as

suggested by some of the queries.

Type the following queries, execute them and give the business task performed by

each query

1. Select ename from works w where salary >= all (select max(salary) from works));

2. Select ename form works w where salary = (select max(salary) from works w1

 where w1.company_name = w.company_name));

3.Select manager-name from manages where manager-name in(Select ename

 from works where company-name = “ ”);

 4.Select manager-name from manages where manager-name not in(select ename

45

 from works where company-name = “ ”);

5.Select ename from works w where salary > some (select salary from works

 where company-name not in (Select company-name from company where city

 =‟Pune‟));

6.Select ename from employee e where city = (Select city from employee e1 ,

 manages m where m.ename = e.ename and m.manager-name = e1.ename);

7.Select * from employee where ename in (select manager-name from manages)

8.Select city count(*) from employee group by city having count(*) >= all (Select

 count(*) from employee group by city)

9.Select ename from works w where salary <> all (Select salary from works where

 ename <> w.ename);

10.Select company-name, sum(salary) from works w group by company-name

 having sum(sal) >= all (select sum(sal) from works group by company_name)

11.Select ename from employee e where city in(„ _‟,‟ ‟);

12.Select ename from employee e where city = (select city from company c, works

 where w.ename = e.name and c.company-name = w.company-name);

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

46

Assignment: 09

Assignment to query tables, using nested queries(use of exists, not exists)

SQL includes a feature for testing whether a sub query has any tuples in its

result, using the following clauses:

Name Description Syntax Example

Exists

The „exists‟ construct
returns the value true if
the argument sub query
is nonempty

select <attribute- list>
from <relation-

list> where

<exists> { sub- query} ;

Select cname from
borrower b where
exists(select * from

depositor where

dname = b.cname);

Not exists

We can test for the non-
existence of tuples in a
sub query by using the
„not exists‟ Construct.
The „not exists‟ construct
can also be used to
simulate the set
containment operation
(The super Set). We can
write “relation A contains
relation B” as “not exists
(B except A)”

select <attribute- list>
from <relation-

list> where <not exists>{
sub-query};

Select cname from
borrower b where
not
exists(select * from
depositor where
dname = b.cname);

Set A:

1.Consider the table you have prepared as part of Assessment work set-A of exercise8,

 Type the following queries, execute them and give the business task performed by

 each query

2. List the names of employees who work in all the projects that “Mr. Pawar” works on.

3. List the names of employees who work on only some projects that “Mr. Joshi” works on

4. List the names of the departments that have at least one project under them. (Write

 using „exists „clause)

5. List the names of employees who do not work on “sales” project (write using „not

 exists‟) clause

6. List the names of employees who work only on those projects that are controlled by

 their department.

47

7. List the names of employees who do not work on any projects that are controlled by

their department.

Set B :

1. Consider the table you have prepared as part of self activity of exercise 08 ,

 Type the following queries, execute them and give the business task performed by each

query.

1. Select company-name from company c where not exists (select city from company

where company-name = “ ” except (select city from company where company-

name = c.company-name));

2. Select ename from employee e where exists (select manager-name from manages

where manager name = e.ename group by manager-name having count(*) >3);

3. Select company-name from company c where not exists (select city from company

where company-name = c.company-name except (select city from company where

company-name = “ ”));

4. Select ename from employee e where exists (select city from employee where city=

 e.city and ename <> e.ename group by city having count(*) > 5)

5. Select company-name from company c where not exists (select company-name from

 company where city = c.city and company-name <> c.company-name)

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

48

 Assignment: 10

 Assignment related to small case studies (Each case study will involve creating tables with

 specified constraints, inserting records to it & writing queries for extracting records from

 these tables)

Steps in solving a case study:

• Read through the given case study carefully.

• Create the given relations in the database. The database

 thus created should be in 3NF. (no data duplication, appropriate

 handling of the relationships)

• Insert sufficient number of records in the relations / tables.

• Create a new file with all the select queries in it.

• To execute each query .

1. Consider the following case study:

A 4-wheeler rental company needs to develop a database to store the following

information: The information about the cars , like the registration number, the chassis

number, the type of the vehicle (car, jeep, SUV etc). the vehicles may have one or more

luxurious features like AC, Stereo, tape, DVD player etc).

The company also needs to maintain the information about its drivers like driver

license no, name, address, age etc.

A car is driven by different drivers on different days , a driver may drive different cars

on different days . The company also needs information regarding the different places to

which the car had been driven down, the names of drivers who have driven it to these

places along with the name of customers who had booked the car to that place. The

information of the different destinations to which the cars from this company can be driven

down, also needs to be stored. Regarding customers, customers can book more than one

car to a place. The customers are allowed to book multiple cars to different places, in a

single booking transaction. The name, address, no of passengers travelling in the car, the

destination, the rental cost etc needs to be stored.

The following constraints are to be defined for the vehicles, drivers, and destination
places:

a) The vehicle make should be after the year 2000.

b) Only vehicles of maruti, Tata are used by the company

49

c) Drivers should be above 20 years of age

d) Drivers should be staying in “Pune” city

e) The destination places should be within 500km radius from Pune.

Design the relational database for the above company, so that the following queries can be

answered:

1. List the names of drivers who have driven a car to “Mumbai”

2. List the name of customers who have booked a “SUV” to “Satara”

3. List the names of customers who have booked cars to Pune or Mumbai or Lonavla

4. List the details of cars that have never driven down to “Mumbai”

5. List the details of the place to which maximum number of customers have driven

down.

6. List the details of the driver who have driven all the vehicles of the company.

7. List the names of the drivers who have driven at least two cars to “Mumbai

8. List the names of drivers who have also driven some vehicles to “Mumbai”

9. List the details of customers who have booked more than two vehicles to “Solapur”

10. List the names of customers who have booked maximum number of vehicles

2. Consider the following case study:

An insurance agent sells policies to clients. Each policy is of a particular type like vehicle

insurance, life insurance, accident insurance etc, and there can be many policies of a particular

type. Each policy will have many monthly premiums, and each premium is associated to only

one policy. Assume appropriate attributes for agents, policy, premiums and policy-types.

The following constraints have to be defined on the relations

a. The policy types can be only accident, life and vehicle.

b. b. The agents can be only from Pune, Mumbai and Chennai.

c. c. The policy amount should be greater than 20000.

d. The policy-sale-date should be greater than the policy-intro-date.

Design the relational database for the above , so that the following queries can be

answered:

1. List the names of agents living in „Nashik‟

2. List the names of policy holders , who have bought policies from the agent

„Mr.Joshi‟

 3.List the names of policyholders, who have bought more than two policies from „Mr.Joshi‟

4.List the names of agents, who have sold policies to only customers who live in

50

 their own City.

5.List the names of agents who have sold at least two policies.

6.List the names of cities, which have the maximum number of agents.

7.List the names of customers who have bought the maximum number of policies.

8.List the details of all premiums , paid or the policy number 2345.

9.Update all policy amount to 20000 for all policies bought by customers from Delhi

 city.

10.Delete all policies , bought from „Mr. Mane‟

 -------------------------- ---------------------------- ------------------------

 Signature of the Instructor Remark Date

