

T. Y. B. Sc.
(Computer Science)

Laboratory Course II
Programming in Java - CS348

Semester I

(From Academic Year 2015)

Name ________________________________ Roll No. _______

College _______________________________ Division _______

Academic Year _____________

PREPARED BY:

PROF. MS. POONAM PONDE (NOWROSJEE WADIA COLLEGE)

PROF. JEEVAN LIMAYE (FERGUSSON COLLEGE)

FIRST EDITION AUTHORS:

 Ms. Poonam Ponde

 Ms. Seema Jawale

 Ms. Kalpana Joshi

 Ms. Jayshri Patil

 Ms. Ranjana Shevkar

ABOUT THE WORK BOOK

• OBJECTIVES OF THIS BOOK

This lab-book is intended to be used by T.Y.B.Sc(Computer Science) students for Laboratory
course – II (Programming in Java) , Semester I.
The objectives of this book are

a. Covers the complete scope of the syllabus.

b. Bringing uniformity in the way course is conducted across different colleges.

c. Continuous assessment of the students.

d. Providing ready references for students while working in the lab.

• How to use this book?

This book is mandatory for the completion of the laboratory course. It is a measure of the
performance of the student in the laboratory for the entire duration of the course.

• Instructions to the students

1. Students should carry this book during practical sessions.

2. Print outs of source code and outputs is optional

3. Student should read the topics mentioned in Reading section of this book before coming for
the practical session.

4. Students should solve those exercises which are selected by Practical in-charge as a part of
journal activity. However, students are free to solve additional exercises for more practice.

5. Each assignment will be assessed on a scale of 0 to 5 as indicated below.

 i) Not done 0
 ii) Incomplete 1
 iii) Late Complete 2
 iv) Needs improvement 3
 v) Complete 4
 vi) Well Done 5

• Difficulty Levels

Self Activity: Students should solve these exercises for practice only.
SET A - Easy: All exercises are compulsory.
SET B - Medium: All exercises are compulsory.

• Instruction to the Instructors

1) Make sure that students follow the instruction as given above.

2) After a student completes a specific set, the instructor has to verify the outputs and sign in the
space provided after the activity.

3) Evaluate each assignment on a scale of 5 as specified above by ticking appropriate box.

4) The value should also be entered on assignment completion page of the respective Lab course.

5) Students should be encouraged to use an IDE like Eclipse for their assignments and project
work.

Assignment Completion Sheet

Sr. No Assignment Name Marks

1 Java Tools and IDE, Simple java programs

2 Array of Objects and Packages

3 Inheritance and Interfaces

4 Exception Handling

5 I/O and File Handling

6 GUI Designing, Event Handling and Applets

 Total out of 30

 Total out of 5

 Signature of Incharge:

Examiner I:

Examiner II:

Date:

Roll No :

Name :

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 1]

Assignment 1: Java Tools and IDE, Simple Java programs

Objectives

• Introduction to the java environment

• Use of java tools like java, javac, jdb and javadoc

• Use of IDE – Eclipse (demo)

• Defining simple classes and creating objects.

Reading

You should read the following topics before starting this exercise
1. Creating, compiling and running a java program.
2. The java virtual machine.
3. Java tools like javac, java, javadoc, javap and jdb.
4. Java keywords
5. Syntax of class.

Ready Reference

Java Tools

(1) javac:- javac is the java compiler which compiles .java file into .class file(i.e. bytecode).
If the program has syntax errors, javac reports them. If the program is error-free, the output of
this command is one or more .class files.
Syntax:
 javac fileName.java

(2) java:- This command starts Java runtime environment, loads the specified .class file and
executes the main method.
Syntax:
 java fileName

(3) javadoc:- javadoc is a utility for generating HTML documentation directly from
comments written in Java source code.Javadoc comments have a special form but seems like
an ordinary multiline comment to the compiler.

Syntax of the comment:
/**

 A sample doc comment

*/

Syntax:
javadoc [options] [packagenames] [sourcefiles] [@files]

Where,
packagenames: A series of names of packages, separated by spaces
sourcefiles: A series of source file names, separated by spaces
@files: One or more files that contain packagenames and sourcefiles in any order, one
name per line.

Javadoc creates the HTML documentation on the basis of the javadoc tags used in the source
code files. These tags are described in the table below:

Tag Syntax Description

@see @see reference Allows you to refer to the documentation in other classes.

 @author

@author author-
information

Author-information contains author name, and / or author
email address or any other appropriate information.

@version @version version-
information

Specifies the version of the program

@since @since version This tag allows you to indicate the version of this code
that began using a particular feature.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 2]

@param @param name description This is used for method documentation. Here, name is the
identifier in the method parameter list, and description is
text that can describes the parameter.

@return @return description This describes the return type of a method.

@throws @throws classname
description

This is used when we handle Exceptions. It describes a
particular type of exception that can be thrown from the
method call.

@deprecated @deprecated description The deprecated tag suggests that this feature is no longer
supported. A method that is marked @deprecated causes
the compiler to issue a warning if it is used.

(4) jdb: -

jdb helps you find and fix bugs in Java language programs. This debugger has limited
functionality.

Syntax:
jdb [options] [class] [arguments]

options : Command-line options.

class : Name of the class to begin debugging.

arguments : Arguments passed to the main() method of class.

After starting the debugger, the jdb commands can be executed. The important jdb commands are:

i. help, or?: The most important jdb command, help displays the list of recognized
commands with a brief description.

ii. run: After starting jdb, and setting any necessary breakpoints, you can use this command to
start the execution the debugged application.

iii. cont: Continues execution of the debugged application after a breakpoint, exception, or
step.

iv. print: Displays Java objects and primitive values. For variables or fields of primitive
types, the actual value is printed. For objects, a short description is printed.
Examples:
print MyClass.myStaticField
print myObj.myInstanceField
print i + j + k
print myObj.myMethod()//if myMethod returns non-null

v. dump: For primitive values, this command is identical to print. For objects, it prints
the current value of each field defined in the object. Static and instance fields are
included.

vi. next: The next command advances execution to the next line in the current stack frame.

vii. step: The step commands advances execution to the next line whether it is in the current
stack frame or a called method.

Breakpoints can be set in jdb at line numbers, constructors, beginning of a method.
Example:

stop at MyClass:10 //sets breakpoint at instruction at line 10 of the source file containing
MyClass

stop in MyClass.display // sets breakpoint at beginning of method display in MyClass

stop in MyClass.<init> //sets breakpoint at default constructor of MyClass

stop in MyClass.<init(int)> //sets breakpoint at parameterized constructor with int as
parameter

(4) javap: -

The javap tool allows you to query any class and find out its list of methods and constants.
javap [options] class

Example: javap java.lang.String
It is a disassembler which allows the bytecodes of a class file to be viewed when used with a
classname and the –c option.

javap -c class

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 3]

Setting CLASSPATH

The classpath is the path that the Java runtime environment searches for classes and other

resource files. The class path can be set using either the –classpath option or by setting the
CLASSPATH environment variable.

The -classpath option is preferred because you can set it individually for each application without
affecting other applications and without other applications modifying its value. The default value
of the class path is ".", meaning that only the current directory is searched. Specifying either the

CLASSPATH variable or the -cp command line switch overrides this value.

javac –classpath \myProg\myPackage; \myProg\otherclasses
Or

CLASSPATH= classpath1;classpath2...
export CLASSPATH

Example
CLASSPATH=.:/usr/local/classes.jar:/home/user1/myclasses
export CLASSPATH

To retain the existing classpath setting, use $CLASSPATH in the new list.
export CLASSPATH=$CLASSPATH:/home/user1/myclasses

About Eclipse

Eclipse is a popular IDE (Integrated Development Environment) for java programming. It
contains a base workspace and an extensible plug-in system for customizing the environment. The
latest Eclipse version 4.5 was released in 2015. The Eclipse IDE is also available as an IDE for
other languages, ranging from C, C++ to Lua, Python, Perl and PHP. It provides an editor,
debugger, source control and other tools.

The GUI looks as shown:

Menubars

Full drop down menus plus quick
access to common functions

Editor Pane

This is where we edit
our source code

Perspective Switcher

We can switch between
various perspectives

here

Outline Pane

This contains a hierarchical
view of a source file

Package Explorer Pane

This is where our
projects/files are listed

Miscellaneous Pane

Various components can appear in this
pane – typically this contains a console

and a list of compiler problems

Task List Pane

This contains a list of
“tasks” to complete

Steps to run a java program using Eclipse:
1. Select workspace
2. Create a new project
3. Project name appears in package explorer, src folder contains source code files
4. Create class (New->Class)
5. Run your program (right click on the class and select Run As -> Java Application)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 4]

Self Activity (using IDE and editor)

1. Sample program

/* Program to generate documentation*/
/**
 This program demonstrates javadoc
*/
public class MyClass {
int num;
 /**
 Default constructor
 */
 public MyClass() {
 num=0;
 }
 /**
 Member function
 @param x Represents the new value of num
 @return void No return value
 */
 public void assignValue(int x) {
 num = x;
 }

Type the following command: javadoc MyClass.java. See the HTML documentation file
MyClass.html

2. Sample program

/* Program to define a class and an object of the class* /
public class MyClass {
int num;
public MyClass() {
 num=0;
 }
public MyClass(int num) {
 this.num = num;
 }
public static void main(String[] args) {
 MyClass m1 = new MyClass();
 if(args.length > 0)
 {
 int n = Integer.parseInt(args[0]);
 MyClass m2 = new MyClass(n);
 System.out.println(m1.num);
 System.out.println(m2.num);
 }
 else
 System.out.println(“Insufficient arguments”);
 }
}

Pass one command line argument to the above program and execute it.

Answer the following questions :

1. How will you pass command line argument using IDE?
 __
__

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 5]

2. Write the output if the command line argument passed is “ABC”.
__

Lab Assignments

SET A

1. Using javap, view the methods of the following classes from the lang package:
java.lang.Object , java.lang.String and java.util.Scanner.

2. Compile sample program 2. Type the following command and view the bytecodes.

javap -c MyClass

SET B

1. Write a java program to display the system date and time in various formats shown below:
Current date is : 31/07/2015
Current date is : 07-31-2015
Current date is : Friday July 31 2015
Current date and time is : Fri July 31 16:25:56 IST 2015
Current date and time is : 31/07/15 16:25:56 PM +0530
Current time is : 16:25:56
Current week of year is : 31
Current week of month : 5
Current day of the year is : 212

Note: Use java.util.Date and java.text.SimpleDateFormat class

2. Define a class MyNumber having one private int data member. Write a default constructor to
initialize it to 0 and another constructor to initialize it to a value (Use this). Write methods
isNegative, isPositive, isZero, isOdd, isEven. Create an object in main. Use command line
arguments to pass a value to the object (Hint : convert string argument to integer) and perform the
above tests. Provide javadoc comments for all constructors and methods and generate the html
help file.

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 6]

Assignment 2: Array of Objects and Packages

Objectives

• Defining a class.

• Creating an array of objects.

• Creating a package. (Using package command)

• Using packages (Using import command)

Reading

You should read the following topics before starting this exercise:
1. Structure of a class in java.
2. Declaring class reference.
3. Creating an object using new.
4. Declaring an array of references.
5. Creating an array of objects.
6. Syntax of the package and import command.

Ready Reference

General form of a class
class classname {

type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;

type methodname1(parameter-list) {

// body of method
}
type methodname2(parameter-list) {

// body of methodTHE JAVA LANGUAGE
}
// ...
type methodnameN(parameter-list) {

// body of method
}

}

Example
class Student{
 private int rollNumber; private String name;
 Student() //constructor
 {
 rollNumber = 0; name = null;
 }
 Student(int rollNumber, String name)
 {
 this.rollNumber = rollNumber; this.name = name;
 }
 void display()
 {
 System.out.println("Roll number = " + rollNumber);
 System.out.println(" Name = " + name);
 }
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 7]

Creating objects:
ClassName referenceName;
referenceName = new ClassName();

 OR
ClassName referenceName = new ClassName();

Example:
Student s1 = new Student();

Student s2 = new Student(10, "ABC");

Overriding toString method of the Object class:

The toString method gives a string representation of an object. To over-ride the toString
method for a user defined class, use the syntax:
public String toString()
{
 // return a string representation of the object
}

Example
class Student{
 private int rollNumber;
 private String name;
 public String toString() {
 return "Roll Number = " + rollNumber + "Name = "+name;
 }
}

Declaring an array of references:
ClassName[] arrayName = new ClassName[size];

Example:
Student[] studentArray = new Student[10];

Creating an array of objects:
for each reference in the array
{
 Create an object using new
}

Example:
Student[] studentArray = new Student[10];
for(i=0; i<10; i++)
 studentArray[i] = new Student();

To convert the argument from String to any type, use Wrapper classes.

Method Purpose

Byte.parseByte Returns byte equivalent of a String

Short.parseShort Returns the short equivalent of a String

Integer.parseInt Returns the int equivalent of a String

Long.parseLong Returns the long equivalent of a String

Float.parseFloat Returns the float equivalent of a String

Double.parseDouble Returns the double equivalent of a String

Simple I/O

To read a String from the console, use the following code:
InputStreamReader isr = new InputStreamReader(System.in);

BufferedReader br = new BufferedReader(isr);
 Or
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 8]

For this, you will have write the following statement at the beginning:
import java.io.*;

Packages:

A package is a collection of related classes and interfaces. It provides a mechanism for
compartmentalizing classes. The Java API is organized as a collection of several predefined
packages. The java.lang package is the default package included in all java programs. The
commonly used packages are:
java.lang Language support classes such as Math, Thread, String
java.util Utility classes such as LinkedList, Vector , Date.
java.io Input/Output classes
java.awt For graphical user interfaces and event handling.
javax.swing For graphical user interfaces
java.net For networking
java.applet For creating applets.

Creating a package

To create a user defined package, the package statement should be written in the source code file.
This statement should be written as the first line of the program. Save the program in a directory
of the same name as the package.
package packageName;

Accessing a package

To access classes from a package, use the import statement.
import packageName.*; //imports all classes
import packageName.className; //imports specified class

Note that the package can have a hierarchy of subpackages. In that case, the package name should
be qualified using its parent packages. Example: project.sourcecode.java
Here, the package named project contains one subpackage named sourcecode which contains a
subpackage named java.

Access Rules

The access rules for members of a class are given in the table below.
Accessible to public protected none private

Same class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass (in other package) Yes Yes No No

Non subclass in Other package Yes No No No

Self Activity

1. Sample program to create objects , demonstrate use of toString and static keyword.
class Student {
 int rollNumber;
 String name;
 static String classTeacher;

 Student(int r, String n) {
 rollNumber = r; name = n;
 }
 static void assignTeacher(String name) {
 classTeacher = name;
 }
 public String toString() {
 return "[" + rollNumber + "," + name + "," + classTeacher +"

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 9]

]";
 }
 public static void main(String[] args) {
 Student s1 = new Student(1,"A");
 Student s2 = new Student(2,"B");
 Student.assignTeacher("ABC");
 System.out.println(s1);
 System.out.println(s2);
 }
}

2. Sample program to read Student roll number and name from the console and display

them (Using BufferedReader).
import java.io.*;
class ConsoleInput
{
 public static void main(String[] args) throws IOException
 {
 int rollNumber;
 String name;
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 System.out.println("Enter the roll number: ");
 rollNumber = Integer.parseInt(br.readLine());
 System.out.println(" Enter the name: ");
 name = br.readLine();
 System.out.println(" Roll Number = " + rollNumber);
 System.out.println(" Name = " + name);
 }
}

3. Sample program to read Student roll number and name from the console and display

them (Using Scanner class).

import java.util.Scanner;

class ScannerTest{

 public static void main(String args[])throws Exception

 {

 Scanner sc=new Scanner(System.in);

 System.out.println("Enter your rollno and name :");

 int rollno=sc.nextInt();

 String name=sc.next();

 System.out.println("Rollno:"+rollno+" Name:"+name);

 sc.close();

 }

}

4. Sample program to create and use packages

//A.java

package P1;

public class A {

 public void display() {

 System.out.println("In display of A");

 }

}

//B.java

package P1.P2; //P2 is a subpackage of P1

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 10]

public class B {

 public void display() {

 System.out.println("In display of B");

 }

}

//PackageTest.java

import P1.*;

import P1.P2.*;

class PackageTest {

 public static void main(String args[]){

 A obj1 = new A();

 obj1.display();

 B obj2 = new B();

 obj2.display();

 }

}

Create folder P1. Save A.java in folder P1. Create folder P2 inside P1. Save B.java in P2.

Lab Assignments

SET A

1. Define a Student class (roll number, name, percentage). Define a default and parameterized
constructor. Keep a count of objects created. Create objects using parameterized constructor and
display the object count after each object is created. (Use static member and method). Also
display the contents of each object.

2. Modify the above program to create n objects of the Student class. Accept details from the user

for each object. Define a static method “sortStudent” which sorts the array on the basis of
percentage.

SET B

1. Create a package named Series having three different classes to print series:
a. Prime numbers b. Fibonacci series c. Squares of numbers

Write a program to generate ‘n’ terms of the above series.

2. Write a Java program to create a Package “SY” which has a class SYMarks (members –
ComputerTotal, MathsTotal, and ElectronicsTotal). Create another package TY which has a class
TYMarks (members – Theory, Practicals). Create n objects of Student class (having rollNumber,
name, SYMarks and TYMarks). Add the marks of SY and TY computer subjects and calculate
the Grade (‘A’ for >= 70, ‘B’ for >= 60 ‘C’ for >= 50 , Pass Class for > =40 else ‘FAIL’) and
display the result of the student in proper format.

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 11]

Assignment 3: Inheritance and Interfaces

Objectives

• To implement inheritance in java.

• To define abstract classes.

• To define and use interfaces.

• Use predefined interfaces like Cloneable

Reading

You should read the following topics before starting this exercise:
1. Concept of inheritance.
2. Use of extends keyword.
3. Concept of abstract class.
4. Defining an interface.
5. Use of implements keyword.

Ready Reference

Inheriting a class : The syntax to create a subclass is :
class SubClassName extends SuperClassName
{
 //class body
}

Example:
class Manager extends Employee
{ //code }

Types of Inheritance

Access in subclass

The following members can be accessed in a subclass:
i) public or protected superclass members.
ii) Members with no specifier if subclass is in same package.

The “super” keyword

It is used for three purposes:

i) Invoking superclass constructor - super(arguments)
ii) Accessing superclass members – super.member
iii) Invoking superclass methods – super.method(arguments)

Example:
class A
{ protected int num;
 A(int num) { this.num = num; }
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 12]

class B extends A
{
 int num;
 B(int a, int b) {
 super(a); //should be the first line in the subclass constructor
 this.num = b;
 }
 void display() {
 System.out.println("In A, num = " + super.num);
 System.out.println("In B, num = " + num);
 }
}

Overriding methods

Redefining superclass methods in a subclass is called overriding. The signature of the subclass
method should be the same as the superclass method.
class A
{
 void method1(int num) {
 //code
 }
}
class B extends A
{
 void method1(int x) {
 //code
 }
}

Dynamic binding

When over-riding is used, the method call is resolved during run-time i.e. depending on the object
type, the corresponding method will be invoked.
Example:
A ref;
ref = new A();
ref.method1(10); //calls method of class A
ref = new B();
ref.method1(20); //calls method of class B

Abstract class

An abstract class is a class which cannot be instantiated. It is only used to create subclasses. A
class which has abstract methods must be declared abstract. An abstract class can have data
members, constructors, method definitions and method declarations.

abstract class ClassName
{
 ...
}

Abstract method

An abstract method is a method which has no definition. The definition is provided by the
subclass.

abstract returnType method(arguments);

Interface

An interface is a pure abstract class i.e. it has only abstract methods and final variables. An
interface can be implemented by multiple classes.

interface InterfaceName
{
 //abstract methods
 //final variables
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 13]

Example:
interface MyInterface
{
 void method1();
 void method2();
 int size= 10; //final and static
}
class MyClass implements MyInterface {
 //define method1 and method2
}

Self Activity

1. Sample program to demonstrate inheritance and interfaces
interface Shape
{
 double area();
}
class Circle implements Shape
{
 double radius;
 Circle(double radius) {
 this.radius=radius;
 }
 public double area() {
 return java.util.Math.PI * radius* radius;
 }
}
class Cylinder extends Circle
{
 double height;
 Cylinder(double radius, double height) {
 super(radius);
 this.height=height;
 }
 public double area() //overriding
 {
 return java.util.Math.PI * radius* radius *height;
 }
}
public class Test {
 public static void main(String[] args)
 {
 Shape s;
 s = new Circle(5.2);
 System.out.println("Area of circle = " + s.area());
 s = new Cylinder(5, 2.5);
 System.out.println("Area of cylinder = " + s.area());
 }
}

Lab Assignments

SET A

1. Define a class Employee having private members – id, name, department, salary. Define
default and parameterized constructors. Create a subclass called “Manager” with private member
bonus. Define methods accept and display in both the classes. Create n objects of the Manager
class and display the details of the manager having the maximum total salary (salary+bonus)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 14]

2. Create an abstract class Shape with methods calc_area and calc_volume. Derive three classes
Sphere(radius) , Cone(radius, height) and Cylinder(radius, height), Box(length, breadth, height)
from it. Calculate area and volume of all. (Use Method overriding).

3. Write a Java program to create a super class Vehicle having members Company and price.
Derive 2 different classes LightMotorVehicle (members – mileage) and HeavyMotorVehicle
(members – capacity-in-tons). Accept the information for n vehicles and display the information
in appropriate form. While taking data, ask the user about the type of vehicle first.

SET B

1. Define an abstract class “Staff” with members name and address. Define two sub-classes of this
class – “FullTimeStaff” (department, salary) and “PartTimeStaff” (number-of-hours, rate-per-
hour). Define appropriate constructors. Create n objects which could be of either FullTimeStaff
or PartTimeStaff class by asking the user’s choice. Display details of all “FullTimeStaff” objects
and all “PartTimeStaff” objects.

2. Create an interface “CreditCardInterface” with methods : viewCreditAmount(), useCard(),
payCredit() and increaseLimit(). Create a class SilverCardCustomer (name, cardnumber (16
digits), creditAmount – initialized to 0, creditLimit - set to 50,000) which implements the above
interface. Inherit class GoldCardCustomer from SilverCardCustomer having the same methods
but creditLimit of 1,00,000. Create an object of each class and perform operations. Display
appropriate messages for success or failure of transactions. (Use method overriding)

i. useCard() method increases the creditAmount by a specific amount upto creditLimit
ii. payCredit() reduces the creditAmount by a specific amount.
iii. increaseLimit() increases the creditLimit for GoldCardCustomers (only 3 times, not more

than 5000Rs. each time)

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 15]

Assignment 4: Exception Handling

Objectives

• Demonstrate exception handling mechanism in java

• Defining user defined exception classes

Reading

You should read the following topics before starting this exercise:

1. Concept of Exception
2. Exception class hierarchy.
3. Use of try, catch, throw, throws and finally keywords
4. Defining user defined exception classes

Ready Reference

Exception: An exception is an abnormal condition that arises in a code at run time.
When an exception occurs,
1. An object representing that exception is created.
2. The method may handle the exception itself.
3. If the method cannot handle the exception, it “throws” this exception object to the method

which called it.
4. The exception is “caught” and processed by some method or finally by the default java

exception handler.

Predefined Exception classes

Java provides a hierarchy of Exception classes which represent an exception type.
Throwable

Error Exception

RuntimeException

Unchecked
errors

Unchecked
exceptions

Checked
exceptions

Exception Handling keywords

Exception handling in java is managed using 5 keywords: try , catch , throw, throws,

finally

Syntax
try

{

 // code that may cause an exception

}

catch (ExceptionType1 object)

{

 // handle the exception

}

catch (ExceptionType2 object)

{

 // handle the exception

}

finally

{

 // this code is always executed

}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 16]

Example:
try
{
 int a = Integer.parseInt(args[0]);
 ...
}
catch(NumberFormatException e)
{
 System.out.println(“Caught”) ;
}

Note: try-catch blocks can be nested.

throw keyword:

The throw keyword is used to throw an exception object or to rethrow an exception.
throw exceptionObject;

Example:
catch(NumberFormatException e)
{
 System.out.println(“Caught and rethrown”) ;
 throw e;
}

We can explicitly create an exception object and throw it. For example:

throw new NumberFormatException();

throws keyword:

If the method cannot handle the exception, it must declare a list of exceptions it may cause. This
list is specified using the throws keyword in the method header. All checked exceptions muct be
caught or declared.

Syntax:
returnType methodName(arguments) throws ExceptionType1
[,ExceptionType2...]
{
 //method body
}

Example:
void acceptData() throws IOException
{
 //code
}

Exception Types:

There are two types of Exceptions, Checked exceptions and Unchecked exceptions. Checked
exceptions must be caught or rethrown. Unchecked exceptions do not have to be caught.

Unchecked Exceptions:

Exception Meaning
ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked
thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread
state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 17]

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

Checked Exceptions:

User Defined Exceptions:
A user defined exception class can be created by extending the Exception class.

class UserDefinedException extends Exception
{
 //code
}

When that exception situation occurs, an object of this exception class can be created and thrown.
For example, if we are accepting an integer whose valid values are only positive, then we can
throw an “InvalidNumberException” for any negative value entered.
class NegativeNumberException extends Exception
{
 NegativeNumberException(int n){
 System.out.println("Negative input " + n);
 }
}
...

public static void main(String[] args)

{

 int num = Integer.parseInt(args[0]);

 if(num < 0)

 throw new NegativeNumberException(num);

 else

 //process num

}

Self Activity

1. Sample program to demonstrate exceptions
class NegativeNumberException extends Exception
{
 NegativeNumberException(int n){
 System.out.println(“Negative input : “ + n);
 }
}
public class ExceptionTest
 {
 public static void main(String args[])
 {
 int num, i, sum=0;
 try {

Exception Meaning
ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 18]

 num = Integer.parseInt(args[0]);
 if(num < 0)
 throw new NegativeNumberException(num);
 for(i=0; i<num; i++)
 sum = sum+i;
 }
 catch(NumberFormatException e){
 System.out.println(“Invalid format”);
 }
 catch(NegativeNumberException e){ }
 finally {
 System.out.println(“The sum is : “+sum);
 }
 } // end main
 } // end class

Compile and run the program for different inputs like abc, -3 and 10

Lab Assignments

SET A

1. Define a class CricketPlayer (name, no_of_innings, no_times_notout, total_runs, bat_avg).
Create an array of n player objects. Calculate the batting average for each player using a static
method avg(). Handle appropriate exception while calculating average. Define a static method
“sortPlayer” which sorts the array on the basis of average. Display the player details in sorted
order.

2. Define a class SavingAccount (acNo, name, balance). Define appropriate constructors and
operations withdraw(), deposit() and viewBalance(). The minimum balance must be 500.
Create an object and perform operations. Raise user defined InsufficientFundsException when
balance is not sufficient for withdraw operation.

SET B

1. Define a class MyDate (day, month, year) with methods to accept and display a MyDate
object. Accept date as dd, mm, yyyy. Throw user defined exception “InvalidDateException”
if the date is invalid.
Examples of invalid dates : 12 15 2015, 31 6 1990, 29 2 2001

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 19]

Assignment 5: I/O and File Handling

Objectives

• Performing Input/Output operations using console and files.

Reading

You should read the following topics before starting this exercise:
1. Concept of streams
2. Types of streams
3. Byte and Character stream classes.
4. The File class

Ready Reference

java.io.File class

This class supports a platform-independent definition of file and directory names. It also
provides methods to list the files in a directory, to check the existence, readability, writeability,
type, size, and modification time of files and directories, to make new directories, to rename files
and directories, and to delete files and directories.

 Constructors:

 public File(String path);

 public File(String path, String name);

 public File(File dir, String name);

Example

 File f1=new File(“/home/java/a.txt”);

 Methods

1. boolean canRead()- Returns True if the file is readable.
2. boolean canWrite()- Returns True if the file is writeable.
3. String getName()- Returns the name of the File with any directory names omitted.

4. boolean exists()- Returns true if file exists
5. String getAbsolutePath()- Returns the complete filename. Otherwise, if the File is a

relative file specification, it returns the relative filename appended to the current working
directory.

6. String getParent()- Returns the directory of the File. If the File is an absolute
specification.

7. String getPath()- Returns the full name of the file, including the directory name.

8. boolean isDirectory()- Returns true if File Object is a directory
9. boolean isFile()- Returns true if File Object is a file
10. long lastModified()- Returns the modification time of the file (which should be used for

comparison with other file times only, and not interpreted as any particular time format).

11. long length()- Returns the length of the file.
12. boolean delete()- deletes a file or directory. Returns true after successful deletion of a

file.

13. boolean mkdir ()- Creates a directory.
14. boolean renameTo (File dest)- Renames a file or directory. Returns true after successful

renaming

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 20]

Example 1:- Checking file existance

import java.io.File;

class FileTest

{

public static void main(String args[])

{

File f1=new File ("data.txt");

if (f1.exists())

 System.out.println ("File Exists");

else

 System.out.println ("File Does Not Exists");

 }

}

Directories
A directory is a File that contains a list of other files & directories. When you create a File object
& it is a directory, the isDirectory() method will return true. In this case list method can be used to
extract the list of other files & directories inside.
The forms of list() method is-

public String[] list()

 public String[] list(FilenameFilter filter)

Example :- Using a list()

String dirname="/javaprg/demo";

File f1=new File (dirname);

if (f1.isDirectory())

{

String s[]= f1.list();

for (int i=0; i<s.length; i++)

{

File f=new File (dirname+"/"+s[i]);

if (f.isDirectory())

System.out.println(s[i]+ " is a directory");

else

System.out.println(s[i]+ " is a File");

}

}

Streams

A stream is a sequence of bytes. When writing data to a stream, the stream is called an output
stream. When reading data from a stream, the stream is called an input stream. If a stream has a
buffer in memory, it is a buffered stream. Binary Streams contain binary data. Character Streams
have character data and are used for storing and retrieving text.

The two main types of Streams are ByteStream and CharacterStream.

ByteStream CharacterStream

InputStream OutputStream Reader Writer

There are four top level abstract stream classes: InputStream, OutputStream, Reader, and Writer.
1. InputStream. A stream to read binary data.
2. OutputStream. A stream to write binary data.
3. Reader. A stream to read characters.
4. Writer. A stream to write characters.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 21]

ByteStream Classes

a. InputStream Methods-

1. int read ()- Returns an integer representation of next available byte of input.-1 is returned at

the stream end.
2. int read (byte buffer[])- Read up to buffer.length bytes into buffer & returns actual number

of bytes that are read. At the end returns –1.
3. int read(byte buffer[], int offset, int numbytes)- Attempts to read up to numbytes bytes

into buffer starting at buffer[offset]. Returns actual number of bytes that are read. At the end
returns –1.

4. void close()- to close the input stream
5. void mark(int numbytes)- places a mark at current point in input stream & remain valid till

number of bytes are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream beginning.
7. long skip(long numbytes)- skips number of bytes.
8. int available()- Returns number of bytes currently available for reading.

b. OutputStream Methods-

1. void close() - to close the OutputStream
2. void write (int b) - Writes a single byte to an output stream.
3. void write(byte buffer[]) - Writes a complete array of bytes to an output stream.
4. void write (byte buffer[], int offset, int numbytes) - Writes a sub range of numbytes bytes

from the array buffer, beginning at buffer[offset].
5. void flush() - clears the buffer.

The following table lists the Byte Stream classes

Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the
Java standard data types

DataOutputStream An output stream that contains methods for writing the
Java standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that supports one-byte “unget,” which
returns a byte to the input stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or more
input streams that will be read

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 22]

CharacterStream Classes

1. Reader : Reader is an abstract class that defines Java’s method of streaming character input.
All methods in this class will throw an IOException.
Methods in this class-
1. int read ()- Returns an integer representation of next available character from invoking

stream. -1 is returned at the stream end.
2. int read (char buffer[])- Read up to buffer.length chacters to buffer & returns actual number

of characters that are successfully read. At the end returns –1.
3. int read(char buffer[], int offset, int numchars)- Attempts to read up to numchars into

buffer starting at buffer[offset]. Returns actual number of characters that are read. At the end
returns –1.

4. void close()- to close the input stream
5. void mark(int numchars)- places a mark at current point in input stream & remain valid till

number of characters are read.
6. void reset()- Resets pointer to previously set mark/ goes back to stream beginning.
7. long skip(long numchars)- skips number of characters.
8. int available()- Returns number of bytes currently available for reading.

b. Writer : Is an abstract class that defines streaming character output. All the methods in this
class returns a void value & throws an IOException. The methods are-

1. void close() - to close the OutputStream
2. void write (int ch) - Writes a single character to an output stream.
3. void write(char buffer[]) - Writes a complete array of characters to an output stream.
4. void write (char buffer[], int offset, int numchars) - Writes a sub range of numchars from
the array buffer, beginning at buffer[offset].
5. void write(String str)- Writes str to output stream.
6. void write(String str, int offset, int numchars)- Writes a subrange of numchars from string
beginning at offset.
7. void flush() - clears the buffer.

The following table lists the Character Stream classes

Stream Class Meaning

BufferedReader Buffered input character stream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file
FileWriter Output stream that writes to a file
FilterReader Filtered reader
FilterWriter Filtered writer
InputStreamReader Input stream that translates bytes to characters
LineNumberReader Input stream that counts lines
OutputStreamWriter Output stream that translates characters to bytes
PipedReader Input pipe
PipedWriter Output pipe
PrintWriter Output stream that contains print() and println()
PushbackReader Input stream that allows characters to be returned to the input stream
Reader Abstract class that describes character stream input
StringReader Input stream that reads from a string
StringWriter Output stream that writes to a string
Writer Abstract class that describes character stream output

RandomAccessFile

Random access files permit nonsequential, or random, access to a file's contents. To access a file
randomly, you open the file, seek a particular location, and read from or write to that file. When

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 23]

opening a file using a RandomAccessFile, you can choose whether to open it read-only or read
write

RandomAccessFile (File file, String mode) throws FileNotFoundException

RandomAccessFile (String filePath, String mode) throws FileNotFoundExcep
tion

The value of mode can be one of these:
 "r" Open for reading only.
 "rw" Open for reading and writing.

Methods:

1. position – Returns the current position

2. position(long) – Sets the position

3. read(ByteBuffer) – Reads bytes into the buffer from the stream

4. write(ByteBffer) – Writes bytes from the buffer to the stream

5. truncate(long) – Truncates the file (or other entity) connected to the stream

Example:

File f = new File("data.dat");

//Open the file for both reading and writing
RandomAccessFile rand = new RandomAccessFile(f,"rw");
rand.seek(f.length()); //Seek to end of file
rand.writeBytes("Append this line at the end"); //Write end of file
rand.close();

System.out.println("Write-Successful");

Self Activity

1. Sample program
/* Program to count occurrences of a string within a text file*/
import java.io.*;
import java.util.*;
public class TextFileReadApp
{
 public static void main (String arg[]) {

 File f = null;
 // Get the file from the argument line.
 if (arg.length > 0)
 f = new File (arg[0]);
 if (f == null || !fe.exists ()) {
 System.exit(0);
 }

 String string_to_find = arg[1];
 int num_lines = 0;
 try {
 FileReader file_reader = new FileReader (f);
 BufferedReader buf_reader = new BufferedReader (file_reader);
 // Read each line and search string
 do {
 String line = buf_reader.readLine ();
 if (line == null) break;
 if (line.indexOf(string_to_find) != -1) num_lines++;
 } while (true);
 buf_reader.close ();
 }
 catch (IOException e) {
 System.out.println ("IO exception =" + e);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 24]

 }
 System.out.println ("No of lines containing “ + string_to_find +
“ = ” + num_lines);
 } // main
} //class TextFileReadApp

Compile this program and pass two command line arguments: filename and string to search.

2. Sample program
/* Program to write and read primitive types to a file */

import java.io.*;

class PrimitiveTypes {

 public static void main(String args[]) throws IOException {

 FileOutputStream fos=new FileOutputStream("info.dat");

 DataOutputStream dos=new DataOutputStream(fos);

 dos.writeInt(25); dos.writeBoolean(true);

 dos.writeChar('A'); dos.writeDouble(5.45);

 fos.close();

 FileInputStream fis=new FileInputStream("info.dat") ;

 DataInputStream dis=new DataInputStream(fis);

 int num =dis.readInt(); boolean b=dis.readBoolean();

 char ch=dis.readChar(); double dbl= dis.readDouble();

 System.out.println("Int- "+num +"\nBoolean- "+b);

 System.out.println("\nCharacter- "+ch+"\nDouble- "+dbl);

 fis.close();

 }

}

3. Sample program
/* Program to read integers from a file using Scanner class*/

import java.io.*;

import java.util.*;

class ReadIntegers {

 public static void main(String args[]) throws IOException {

 FileReader file = new FileReader("numbers.txt");

 Scanner sc = new Scanner(file);

 int sum=0, num;

 while(sc.hasNext())

 {

 num = sc.nextInt();

 System.out.println("Number = "+ num);

 sum = sum+num;

 }

 System.out.println("The sum = "+ sum);

 file.close();

 }

}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 25]

Lab Assignments

SET A

1. Write a program to accept a string as command line argument and check whether it is a file or
directory. If it is a directory, list the contents of the directory, count how many files the
directory has and delete all files in that directory having extension .txt. (Ask the user if the
files have to be deleted). If it is a file, display all information about the file (path, size,
attributes etc).

2. Write a menu driven program to perform the following operations on a text file “phone.txt”

which contains name and phone number pairs. The menu should have options:
i. Search name and display phone number
ii. Add a new name-phone number pair.

SET B

1. Write a program to read item information (id, name, price, qty) in file “item.dat”. Write a menu
driven program to perform the following operations using Random access file:
 i. Search for a specific item by name. ii. Find costliest item. ii. Display all items and total cost

Additional Programs for practice

1. Accept the names of two files and copy the contents of the first to the second. Add Author

name and Date in comments in the beginning of file. Add the comment ‘end of file’ at the
end.

2. Write a Java program to accept an option, string and file name using command line argument.
Perform following operations:

a. If no option is passed then print all lines in the file containing the string.
b. If the option passed is –c then print the count of lines containing the string.
c. If the option passed is –v then print the lines not containing the string.

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 26]

Assignment 6: GUI Designing, Event Handling and Applets

Objectives

• To demonstrate GUI creation using Swing package and Layout managers.

• Understand the Event Handling mechanism in java.

• Using Event classes, Event Listeners and Adapters.

• Creating java applets which run in a web browser.

Reading

You should read the following topics before starting this exercise
1. AWT and Swing concepts.
2. Layout managers in java
3. Containers and Components
4. Adding components to containers
5. Event sources, listeners and delegation event model
6. Adapter classes
7. Applet tag, Applet class, applet methods

Ready Reference

Graphical User Interface elements are implemented in two java packages – AWT and Swing.
Swing is the newer package and swing classes are based on AWT classes.

Swing Architecture:

The design of the Swing component classes is based on the Model-View-Controller architecture,
or MVC.

1. The model stores the data.
2. The view creates the visual representation from the data in the model.
3. The controller deals with user interaction and modifies the model and/or the view.

Swing Classes:

The following table lists some important Swing classes and their description.

Class Description

Box Container that uses a BoxLayout

JApplet Base class for Swing applets

JButton Selectable component that supports text/image display

JCheckBox Selectable component that displays state to user

JCheckBoxMenuItem Selectable component for a menu; displays state to user

JColorChooser For selecting colors

JComboBox For selecting from a drop-down list of choices

JComponent Base class for Swing components

JDesktopPane Container for internal frames

JDialog Base class for pop-up subwindows

JEditorPane For editing and display of formatted content

JFileChooser For selecting files and directories

JFormattedTextField For editing and display of a single line of formatted text

JFrame Base class for top-level windows

JInternalFrame Base class for top-level internal windows

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 27]

Class Description

JLabel For displaying text/images

JLayeredPane Container that supports overlapping components

JList For selecting from a scrollable list of choices

JMenu Selectable component for holding menu items; supports text/image display

JMenuBar For holding menus

JMenuItem Selectable component that supports text/image display

JOptionPane For creating pop-up messages

JPanel Basic component container

JPasswordField For editing and display of a password

JPopupMenu For holding menu items and popping up over components

JProgressBar For showing the progress of an operation to the user

JRadioButton Selectable component that displays state to user; included in ButtonGroup to ensure that
only one button is selected

JRadioButtonMenuItem Selectable component for menus; displays state to user; included in ButtonGroup to
ensure that only one button is selected

JRootPane Inner container used by JFrame, JApplet, and others

JScrollBar For control of a scrollable area

JScrollPane To provide scrolling support to another component

JSeparator For placing a separator line on a menu or toolbar

JSlider For selection from a numeric range of values

JSpinner For selection from a set of values, from a list, a numeric range, or a date range

JSplitPane Container allowing the user to select the amount of space for each of two components

JTabbedPane Container allowing for multiple other containers to be displayed; each container appears
on a tab

JTable For display of tabular data

JTextArea For editing and display of single-attributed textual content

JTextField For editing and display of single-attributed textual content on a single line

JTextPane For editing and display of multi-attributed textual content

JToggleButton Selectable component that supports text/image display; selection triggers component to
stay “in”

JToolBar Draggable container

JToolTip Internally used for displaying tool tips above components

JTree For display of hierarchical data

JViewport Container for holding a component too big for its display area

JWindow Base class for pop-up windows

Layout Manager

 The job of a layout manager is to arrange components on a container. Each container has a
layout manager associated with it. To change the layout manager for a container, use the
setLayout() method.

Syntax
setLayout(LayoutManager obj)

The predefined managers are listed below:

1. FlowLayout 2.BorderLayout 3.GridLayout

4. BoxLayout 5.CardLayout 6.GridBagLayout

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 28]

4 5 6

3

1 2

NORTH

WEST EASTCENTER

SOUTH

12

1 2 3

4 5 6

7 8 9

10 11

FlowLayout BorderLayout GridLayout

1

2

3

4

1 2 3

1 2

3 4
1

2

Card1

Card2

1

2 3 4

7

5 6

8 9

BoxLayout CardLayout GridBagLayout

Examples:
JPanel p1 = new JPanel()
p1.setLayout(new FlowLayout());
p1.setLayout(new BorderLayout());
p1.setLayout(new GridLayout(3,4));

Important Containers:

1. JFrame – This is a top-level container which can hold components and containers like panels.

Constructors

JFrame()

JFrame(String title)

Important Methods

setSize(int width, int height) -Specifies size of the frame in pixels

setLocation(int x, int y) -Specifies upper left corner

setVisible(boolean visible) -Set true to display the frame

setTitle(String title) -Sets the frame title

setDefaultCloseOperation(int
mode)

-Specifies the operation when frame is closed. The modes are:

 JFrame.EXIT_ON_CLOSE JFrame.DO_NOTHING_ON_CLOSE

 JFrame.HIDE_ON_CLOSE JFrame.DISPOSE_ON_CLOSE

pack() -Sets frame size to minimum size required to hold components

2. JPanel – This is a middle-level container which can hold components and can be added to
other containers like frame and panels.

Constructors

public javax.swing.JPanel(java.awt.LayoutManager, boolean);
public javax.swing.JPanel(java.awt.LayoutManager);
public javax.swing.JPanel(boolean);
public javax.swing.JPanel();

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 29]

Important Components :

1. Label : With the JLabel class, you can display unselectable text and images.

Constructors-

JLabel(Icon i) JLabel(Icon I , int n)
JLabel(String s) JLabel(String s, Icon i, int n)
JLabel(String s, int n) JLabel()

The int argument specifies the horizontal alignment of the label's contents within its

drawing area; defined in the SwingConstants interface (which JLabel implements): LEFT
(default), CENTER, RIGHT, LEADING, or TRAILING.

Methods-

1. Set or get the text displayed by the label.

void setText(String) String getText()
2. Set or get the image displayed by the label.

void setIcon (Icon) Icon getIcon()
3. Set or get the image displayed by the label when it's disabled. If you don't specify a disabled

image, then the look-and-feel creates one by manipulating the default image.

void setDisabledIcon(Icon) Icon getDisabledIcon()
4. Set or get where in the label its contents should be placed. For vertical alignment: TOP,

CENTER (the default), and BOTTOM.

void setHorizontalAlignment(int) void setVerticalAlignment(int)
int getHorizontalAlignment() int getVerticalAlignment()

2. Button

A Swing button can display both text and an image. The underlined letter in each button's
text shows the mnemonic which is the keyboard alternative.

Constructors-
 JButton(Icon I)

JButton(String s)
JButton(String s, Icon I)

Methods-

 void setDisabledIcon(Icon) void setPressedIcon(Icon)
void setSelectedIcon(Icon) void setRolloverIcon(Icon)
String getText() void setText(String)

Event- ActionEvent

3. Check boxes

Class- JCheckBox

Constructors-
JCheckBox(Icon i) JCheckBox(Icon i,booean state)
JCheckBox(String s) JCheckBox(String s, boolean state)
JCheckBox(String s, Icon i) JCheckBox(String s, Icon I, boolean state)

Methods-

 void setSelected(boolean state) String getText()

 void setText(String s)
Event- ItemEvent

4. Radio Buttons

Class- JRadioButton

Constructors-
JRadioButton (String s) JRadioButton(String s, boolean state)
JRadioButton(Icon i) JRadioButton(Icon i, boolean state)
JRadioButton(String s, Icon i) JRadioButton(String s, Icon i, boolean
state)
JRadioButton()

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 30]

To create a button group- ButtonGroup()
Adds a button to the group, or removes a button from the group.

void add(AbstractButton) void remove(AbstractButton)

5. Combo Boxes

Class- JComboBox

Constructors- JComboBox()

Methods-

void addItem(Object) Object getItemAt(int)
Object getSelectedItem() int getItemCount()
Event- ItemEvent

6. List

Constructor- JList(ListModel)

List models-

1. SINGLE_SELECTION - Only one item can be selected at a time. When the user selects

an item, any previously selected item is deselected first.

2. SINGLE_INTERVAL_SELECTION- Multiple, contiguous items can be selected.

When the user begins a new selection range, any previously selected items are deselected
first.

3. MULTIPLE_INTERVAL_SELECTION- The default. Any combination of items can

be selected. The user must explicitly deselect items.

Methods-

boolean isSelectedIndex(int) void setSelectedIndex(int)
void setSelectedIndices(int[]) void setSelectedValue(Object, boolean)
void setSelectedInterval(int, int) int getSelectedIndex()
int getMinSelectionIndex() int getMaxSelectionIndex()
int[] getSelectedIndices() Object getSelectedValue()
Object[] getSelectedValues()

Example-
listModel = new DefaultListModel();
listModel.addElement("India");
listModel.addElement("Japan");
listModel.addElement("France");
listModel.addElement("Denmark");
list = new JList(listModel);

Event- ActionEvent

7. Text classes

All text related classes are inherited from JTextComponent class

a. JTextField

Creates a text field. The int argument specifies the desired width in columns. The String
argument contains the field's initial text. The Document argument provides a custom document

for the field.

Constructors-
JTextField() JTextField(String)
JTextField(String, int) JTextField(int)
JTextField(Document, String, int)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 31]

b. JPasswordField
Creates a password field. When present, the int argument specifies the desired width in

columns. The String argument contains the field's initial text. The Document argument provides

a custom document for the field.

Constructors-
JPasswordField() JPasswordField(String)
JPasswordField(String, int) JPasswordField(int)
JPasswordField(Document, String, int)

Methods-
1. Set or get the text displayed by the text field.

void setText(String) String getText()
2. Set or get the text displayed by the text field.

char[] getPassword()
3. Set or get whether the user can edit the text in the text field.

void setEditable(boolean) boolean isEditable()
4. Set or get the number of columns displayed by the text field. This is really just a hint for

computing the field's preferred width.

void setColumns(int); int getColumns()

5. Get the width of the text field's columns. This value is established implicitly by the font.

 int getColumnWidth()
6. Set or get the echo character i.e. the character displayed instead of the actual characters typed

by the user.

void setEchoChar(char) char getEchoChar()
Event- ActionEvent

c. JTextArea
Represents a text area which can hold multiple lines of text

Constructors-
JTextArea (int row, int cols)
JTextArea (String s, int row, int cols)

Methods-

 void setColumns (int cols) void setRows (int rows)
 void append(String s) void setLineWrap (boolean)

8. Dialog Boxes

Types-
1. Modal- wont let the user interact with the remaining windows of application until

first deals with it. Ex- when user wants to read a file, user must specify file name
before prg. can begin read operation.

2. Modeless dialog box- Lets the user enters information in both, the dialog box &
remainder of application ex- toolbar.

Swing has a JOptionPane class, that lets you put a simple dialog box.
Methods in JOption Class

1. static void showMessageDialog()- Shows a message with ok button.
2. static int showConfirmDialog()- shows a message & gets users options from set

of options.
3. static int showOptionDialog- shows a message & get users options from set of

options.
4. String showInputDialog()- shows a message with one line of user input.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 32]

9. Menu

Creating and Setting Up Menu Bars

Constructor or Method Purpose

JMenuBar() Creates a menu bar.

JMenu add(JMenu) Creates a menu bar.

void setJMenuBar(JMenuBar)
JMenuBar getJMenuBar()

Sets or gets the menu bar of an applet, dialog, frame,
internal frame, or root pane.

Creating and Populating Menus

JMenu()
JMenu(String)

Creates a menu. The string specifies the text to display
for the menu.

JMenuItem add(JMenuItem)
JMenuItem add(Action)
JMenuItem add(String)

Adds a menu item to the current end of the menu. If the
argument is an Action object, then the menu creates a
menu item. If the argument is a string, then the menu
automatically creates a JMenuItem object that displays
the specified text.

void addSeparator() Adds a separator to the current end of the menu.

JMenuItem insert(JMenuItem, int)
JMenuItem insert(Action, int)
void insert(String, int)
void insertSeparator(int)

Inserts a menu item or separator into the menu at the
specified position. The first menu item is at position 0,
the second at position 1, and so on. The JMenuItem,
Action, and String arguments are treated the same as in
the corresponding add methods.

void remove(JMenuItem)
void remove(int)
void removeAll()

Removes the specified item(s) from the menu. If the
argument is an integer, then it specifies the position of
the menu item to be removed.

Implementing Menu Items

JMenuItem()
JMenuItem(String)
JMenuItem(Icon)
JMenuItem(String, Icon)
JMenuItem(String, int)

Creates an ordinary menu item. The icon argument, if
present, specifies the icon that the menu item should
display. Similarly, the string argument specifies the
text that the menu item should display. The integer
argument specifies the keyboard mnemonic to use. You
can specify any of the relevant VK constants defined in
the KeyEvent class. For example, to specify the A
key, use KeyEvent.VK_A.

JCheckBoxMenuItem()
JCheckBoxMenuItem(String)
JCheckBoxMenuItem(Icon)
JCheckBoxMenuItem(String, Icon)
JCheckBoxMenuItem(String, boolean)
JCheckBoxMenuItem(String, Icon,
boolean)

Creates a menu item that looks and acts like a check
box. The string argument, if any, specifies the text that
the menu item should display. If you specify true for
the boolean argument, then the menu item is initially
selected (checked). Otherwise, the menu item is
initially unselected.

JRadioButtonMenuItem()
JRadioButtonMenuItem(String)
JRadioButtonMenuItem(Icon)
JRadioButtonMenuItem(String, Icon)
JRadioButtonMenuItem(String, boolean)
JRadioButtonMenuItem(Icon, boolean)
JRadioButtonMenuItem(String, Icon,
boolean)

Creates a menu item that looks and acts like a radio
button. The string argument, if any, specifies the text
that the menu item should display. If you specify true
for the boolean argument, then the menu item is
initially selected. Otherwise, the menu item is initially
unselected.

void setState(boolean)
boolean getState()
(in JCheckBoxMenuItem)

Set or get the selection state of a check box menu item.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 33]

void setEnabled(boolean)
If the argument is true, enable the menu item.
Otherwise, disable the menu item.

Event handling is an important part of GUI based applications. Events are generated by event
sources. A mouse click, Window closed, key typed etc. are examples of events.
All java events are sub-classes of java.awt.AWTEvent class.

Java has two types of events:
1. Low-Level Events: Low-level events represent direct communication from user. A low level

event is a key press or a key release, a mouse click, drag, move or release, and so on.
Following are low level events.

Event Description

ComponentEvent Indicates that a component object (e.g. Button, List, TextField) is moved, resized,
rendered invisible or made visible again.

FocusEvent Indicates that a component has gained or lost the input focus.

KeyEvent Generated by a component object (such as TextField) when a key is pressed,
released or typed.

MouseEvent Indicates that a mouse action occurred in a component. E.g. mouse is pressed,
releases, clicked (pressed and released), moved or dragged.

ContainerEvent Indicates that a container’s contents are changed because a component was added
or removed.

WindowEvent Indicates that a window has changed its status. This low level event is generated
by a Window object when it is opened, closed, activated, deactivated, iconified,
deiconified or when focus is transferred into or out of the Window.

2. High-Level Events: High-level (also called as semantic events) events encapsulate the

meaning of a user interface component. These include following events.

Event Description

ActionEvent Indicates that a component-defined action occurred. This high-level event is
generated by a component (such as Button) when the component-specific action
occurs (such as being pressed).

AdjustmentEvent The adjustment event is emitted by Adjustable objects like scrollbars.

ItemEvent Indicates that an item was selected or deselected. This high-level event is
generated by an ItemSelectable object (such as a List) when an item is selected or
deselected by the user.

TextEvent Indicates that an object’s text changed. This high-level event is generated by an
object (such as TextComponent) when its text changes.

The following table lists the events, their corresponding listeners and the method to add the
listener to the component.
Event Event Source Event Listener Method to add listener to

event source

Low-level Events

ComponentEvent Component ComponentListener addComponentListener()

FocusEvent Component FocusListener addFocusListener()

KeyEvent Component KeyListener addKeyListener()

MouseEvent Component MouseListener
MouseMotionListener

addMouseListener()
addMouseMotionListener()

ContainerEvent Container ContainerListener addContainerListener()

WindowEvent Window WindowListener addWindowListener()

High-level Events

ActionEvent Button
List
MenuItem
TextField

ActionListener addActionListener()

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 34]

ItemEvent Choice
CheckBox
CheckBoxMenuItem
List

ItemListener addItemListener()

AdjustmentEvent Scrollbar AdjustmentListener addAdjustmentListener()

TextEvent TextField
TextArea

TextListener addTextLIstener()

Event class hierarchy

java.lang.Object

java.util.EventObject

java.awt.AWTEvent

ActionEvent AdjustmentEvent ComponentEvent ItemEvent TextEvent

ContainerEvent FocusEvent InputEvent PaintEvent WindowEvent

KeyEvent MouseEvent

Listener Methods:

Methods Description

ComponentListener

componentResized(ComponentEvent e) Invoked when component’s size changes.

componentMoved(ComponentEvent e) Invoked when component’s position changes.

componentShown(ComponentEvent e) Invoked when component has been made visible.

componentHidden(ComponentEvent e) Invoked when component has been made invisible.

FocusListener

focusGained(FocusEvent e) Invoked when component gains the keyboard focus.

focusLost(FocusEvent e) Invoked when component loses the keyboard focus.

KeyListener

keyTyped(KeyEvent e) Invoked when a key is typed.

keyPressed(KeyEvent e) Invoked when a key is pressed.

keyReleased(KeyEvent e) Invoked when a key is released.

MouseListener

mouseClicked(MouseEvent e) Invoked when a mouse button is clicked (i.e. pressed and
released) on a component.

mousePressed(MouseEvent e) Invoked when a mouse button is pressed on a component.

mouseReleased(MouseEvent e) Invoked when a mouse button is released on a component.

mouseEntered(MouseEvent e) Invoked when a mouse enters a component.

mouseExited(MouseEvent e) Invoked when a mouse exits a component.

MouseMotionListener

mouseDragged(MouseEvent e) Invoked when a mouse button is pressed on a component and
then dragged.

mouseMoved(MouseEvent e) Invoked when a the mouse cursor is moved on to a component
but mouse button is not pressed.

ContainerListener

componentAdded(ContainerEvent e) Invoked when a component is added to the container.

componentRemoved(ContainerEvent e) Invoked when a component is removed from the container.

WindowListener

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 35]

windowOpened(WindowEvent e) Invoked the first time a window is made visible

windowClosing(WindowEvent e) Invoked when the user attempts to close the window from the
window’s system menu.

windowClosed(WindowEvent e) Invoked when a window has been closed as the result of calling
dispose on the window.

windowIconified(WindowEvent e) Invoked when a window is changed from a normal to a
minimized state.

windowDeiconified(WindowEvent e) Invoked when a window is changed from minimized to normal
state.

windowActivated(WindowEvent e) Invoked when the window is set to be the active window.

windowDeactivated(WindowEvent e) Invoked when the window is no longer the active window.

ActionListener

actionPerformed(ActionEvent e) Invoked when an action occurs.

ComponentListsner

itemStateChanged(ActionEvent e) Invoked when anitem has been selected oe deselected by the
user.

AdjustmentListener

adjustmentValueChanged(ActionEvent e) Invoked when the value of the adjustable has changed.

TextListener

textValueChanged(ActionEvent e) Invoked when the value of the text has changed.

Adapter Classes:

All high level listeners contain only one method to handle the high-level events. But most low level
event listeners are designed to listen to multiple event subtypes (i.e. the MouseListener listens to
mouse-down, mouse-up, mouse-enter, etc.). AWT provides a set of abstract “adapter” classes, which
implements each listener interface. These allow programs to easily subclass the Adapters and override
only the methods representing event types they are interested in, instead of implementing all methods
in listener interfaces.

The Adapter classes provided by AWT are as follows:

java.awt.event.ComponenentAdapter java.awt.event.ContainerAdapter
java.awt.event.FocusAdapter java.awt.event.KeyAdapter
java.awt.event.MouseAdapter java.awt.event.MouseMotionAdapter
java.awt.event.WindowAdapter

Applet

Applets are small java programs which are executed and displayed in a java compatible web browser.

Creating an applet

All applets are subclasses of the java.applet.Applet class. You can also create an applet by extending
the javax.swing.JApplet class. The syntax is:

class MyApplet extends Applet

{

 //applet methods

}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 36]

Applet methods:

Method Purpose

init() Automatically called to perform initialization of the applet. Executed only once.

start()
Called every time the applet moves into sight on the Web browser to allow the applet
to start up its normal operations.

stop()
Called every time the applet moves out of sight on the Web browser to allow the applet
to shut off expensive operations.

destroy()
Called when the applet is being unloaded from the page to perform final release of
resources when the applet is no longer used

paint() Called each time the applets output needs to be redrawn.

Running an applet

1. Compile the applet code using javac
2. Use the java tool – appletviewer to view the applet (embed the APPLET tag in comments
in the code)
3. Use the APPLET tag in an HTML page and load the applet in a browser

Using appletviewer:

1. Write the HTML APPLET tag in comments in the source file.

2. Compile the applet source code using javac.

3. Use appletviewer ClassName.class to view the applet.

Using browser:

1. Create an HTML file containing the APPLET tag.
2. Compile the applet source code using javac.
3. In the web browser, open the HTML file.

The APPLET tag

< APPLET

 [CODEBASE = appletURL]

 CODE = appletClassFile

 [ALT = alternateText]

 [ARCHIVE = archiveFile]

 [NAME = appletInstanceName]

 WIDTH = pixels

 HEIGHT = pixels

 [ALIGN = alignment]

 [VSPACE = pixels]

 [HSPACE = pixels]

>

[< PARAM NAME = AttributeName VALUE = AttributeValue />]

</APPLET>

Attribute Value Meaning

align left

right

top

bottom

middle

baseline

Specifies the alignment of an applet according to
surrounding elements

alt text Specifies an alternate text for an applet

archive URL Specifies the location of an archive file

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 37]

code URL Specifies the file name of a Java applet

codebase URL Specifies a relative base URL for applets specified in the
code attribute

height pixels Specifies the height of an applet

hspace pixels Defines the horizontal spacing around an applet

name name Defines the name for an applet (to use in scripts)

vspace pixels Defines the vertical spacing around an applet

width pixels Specifies the width of an applet

The mandatory attributes are CODE, HEIGHT and WIDTH.

Examples:
1. <applet code=MyApplet width=200 height=200 archive="files.jar">
 </applet>
2. <applet code=Simple.class width=100 height=200 codebase=”example/”>
 </applet>

Passing parameters to applets

The PARAM tag allows us to pass information to an applet when it starts running.
A parameter is a NAME – VALUE pair. Every parameter is identified by a name and it has a
value.
< PARAM NAME = AttributeName VALUE = AttributeValue />

Example:
<APPLET NAME = "MyApplet.class" WIDTH = 100 HEIGHT = 100>
<PARAM NAME = "ImageSource" VALUE = "project/images/">
<PARAM NAME = "BackgroundColor" VALUE = "0xc0c0c0">
<PARAM NAME = "FontColor" VALUE = "Red">
</APPLET>

The Applet can retrieve information about the parameters using the getParameter() method.
String getParameter(String parameterName);

Example:
String dirName = getParameter(“ImageSource”);
Color c = new Color(Integer.parseInt(getParameter(“BackgroundColor”)));

paint(), repaint() and update()

The paint() method redraws the applet. The repaint() method is used to force redrawing of the
applet. The update() method redraws only a portion of the applet.

Self Activity

1. Sample program
/* Program to demonstrate Button and text field */

import java.awt.event.*;
import javax.swing.*;
import java.awt.*;
public class JButtonDemo extends JFrame implements

ActionListener
{

JTextField jtf; JButton jb;
 public JButtonDemo()
 {

setLayout(new FlowLayout());
jtf=new JTextField(15);
add (jtf);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 38]

jb=new JButton (“Click Me”);
jb.addActionListener (this);
add(jb);
setSize(200,200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

 }
public void actionPerformed(ActionEvent ae)
{ jtf.setText (ae.getActionCommand()); }
public static void main(String[] args){

new JButtonDemo();
}

}

2. Sample program
/* Program to demonstrate Combobox */
import java.awt.*; import javax.swing.*; import java.awt.event.*;
public class JCdemo extends JFrame implements ItemListener
{

JTextField jtf; JCheckBox jcb1, jcb2;
public JCdemo()
{
setLayout(new FlowLayout());
jcb1=new JCheckBox("Swing Demos");
jcb1.addItemListener(this); add(jcb1);
jcb2=new JCheckBox("Java Demos");
jcb2.addItemListener(this); add(jcb2);

jtf=new JTextField(35); add(jtf);
setSize(200,200);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
public void itemStateChanged (ItemEvent ie)
{ String text = " ";
 if(jcb1.isSelected())
 text = text + jcb1.getText() + " ";
 if(jcb2.isSelected())
 text = text + jcb2.getText();
 jtf.setText(text);
}
public static void main(String[] args){
 new JCdemo();
}

}

3. Sample program
/* Program to demonstrate Radio Button */
import java.awt.*; import javax.swing.*; import java.awt.event.*;
public class JRdemo extends JFrame implements ActionListener
{
 JTextField jtf;
 JRadioButton jrb1,jrb2; ButtonGroup bg;
 public JRdemo()
 {
 setLayout(new FlowLayout());
 bg=new ButtonGroup();

 jrb1=new JRadioButton("A");
 jrb1.addActionListener(this);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 39]

 bg.add(jrb1); add(jrb1);

 jrb2=new JRadioButton("B");
 jrb2.addActionListener(this);
 bg.add(jrb2); add(jrb2);
 jtf=new JTextField(5); add(jtf);
 setSize(200,200);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 public void actionPerformed (ActionEvent ae)
 { jtf.setText(ae.getActionCommand()); }
 public static void main(String[] args)
 { new JRdemo(); }
}

4. Sample program
/* Program to handle mouse movements and key events on a frame*/
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

public class EventTest extends JFrame
{
 JLabel l = new JLabel();
 EventTest()
 {
 setLayout(new FlowLayout());
 add(l);
 addKeyListener(new KeyAdapter()
 {
 public void keyTyped(KeyEvent ke)
 {
 l.setText("You typed " + ke.getKeyChar());
 }
 });
 addMouseMotionListener(new MouseMotionAdapter()
 {
 public void mouseMoved(MouseEvent me)
 {
 l.setText("Mouse moved : X = "+ me.getX() + "Y = " +
me.getY());
 }
 });
 setSize(200,200);
 setVisible(true);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 public static void main(String[] args)
 {
 new EventTest();
 }
}

5. Sample program
/* Program to display a message in an applet*/
import java.awt.*;

import java.applet.*;

/*

<applet code="MyApplet.class" width=200 height=100>

</applet>

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 40]

*/

public class MyApplet extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("My First Applet", 20,20);

 }

}

Save this as MyApplet.java. Compile and Execute it using command – appletviewer
MyApplet.class

6. Sample program
/* Applet with components*/
import java.awt.*;
import javax.swing.* ;

import java.applet.*;

/*

<applet code="MyApplet.class" width=200 height=100>

</applet>

*/

public class MyApplet extends Applet

{

 JPanel p; JTextField t; JButton b;

 public void init()

 {

 p = new JPanel();

 p.setLayout(new FlowLayout());

 t = new JTextField(20);

 b = new JButton("Click");

 p.add(t); p.add(b);

 add(p);

 }

}

Save this as MyApplet.java Compile the file. Execute it using command – appletviewer
MyApplet.class

Lab Assignments

SET A

1. Write a program to create the following GUI and apply the changes to the text in the TextField.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 41]

2. Create the following GUI screen using appropriate layout managers. Accept the name, class ,
hobbies of the user and display the selected options in a text box.

3. Create an Applet which displays a message in the center of the screen. The message indicates
the events taking place on the applet window. Handle events like mouse click, mouse moved,
mouse dragged, mouse pressed, and key pressed. The message should update each time an event
occurs. The message should give details of the event such as which mouse button was pressed,
which key is pressed etc. (Hint: Use repaint(), KeyListener, MouseListener, MouseEvent method
getButton, KeyEvent methods getKeyChar)

SET B

1.Write a java program to implement a simple arithmetic calculator. Perform appropriate
validations.

2. Write a menu driven program to perform the following operations on a set of integers. The
Load operation should generate 50 random integers (2 digits) and display the numbers on the
screen. The save operation should save the numbers to a file “numbers.txt”. The Compute menu
provides various operations and the result is displayed in a message box. The Search operation
accepts a number from the user in an input dialog and displays the search result in a message
dialog. The sort operation sorts the numbers and displays the sorted data on the screen.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 42]

3. Write a java program to create the following GUI for user registration form. Perform the
following validations:
i. Password should be minimum 6 characters containing atleast one uppercase letter, one

digit and one symbol.
ii. Confirm password and password fields should match.
iii. The Captcha should generate two random 2 digit numbers and accept the sum from the

user.
If above conditions are met, display “Registration Successful” otherwise “Registration Failed”
after the user clicks the Submit button.

Additional programs for practice

1.Create an application in Java using swing that will move star towards up, down, left and right.
Display appropriate message if it crosses the boundary. Design the screen as shown:

Left or
Up is

error

Up is
error

Up is
error

Right or
Up is

error

Left is

error Right is

error

Left is

error

*

 Right is

error

Left or
Down is

error
Down is
error

Down is
error

Right or
down is

error

UP

Label Field

Down

Left

Right

2. Create a GUI and program for number conversion from decimal to binary, octal and
hexadecimal when the user clicks on “Calculate”.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – I [Page 43]

3. Create a conversion applet which accepts value in one unit and converts it to another. The input
and output unit is selected from a list. Perform conversion to and from Feet, Inches, Centimeters,
Meters and Kilometers.

Signature of the instructor

Date

Assignment Evaluation

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T. Y. B. Sc.
(Computer Science)

CS-348 Laboratory Course II
(Java Programming - II)

 (As per new syllabus w.e.f. academic year 2015-2016)

Semester II

Name ________________________________ Roll No. _______

College _______________________________ Division _______

Academic Year _____________

CO-ORDINATOR:
PROF. MS. POONAM PONDE
 NOWROSJEE WADIA COLLEGE, PUNE

EDITED BY :

Ms. Poonam Ponde

INPUTS GIVEN BY :
Mr. Jeevan Tonde
Ms. Rasika Rahalkar

PREVIOUS EDITION AUTHORS:

Ms. Poonam Ponde
Mr. Jeevan Limaye
Mr. Sachin Bhoite
Ms. Kalpana Joshi

ABOUT THE WORK BOOK

 OBJECTIVES OF THIS BOOK

This lab-book is intended to be used by T.Y.B.Sc(Computer Science) students
for Laboratory course – II (Java programming), Semester II.
The objectives of this book are

a. Covers the complete scope of the syllabus.
b. Bringing uniformity in the way course is conducted across different colleges.
c. Continuous assessment of the students.
d. Providing ready references for students while working in the lab.

 Instructions to the students

1. This book is mandatory for the completion of the laboratory course. Students
 should carry this book during practical sessions.

2. Student should read the topics mentioned in Reading section of this book
before coming for the practical session.

3. Students should get the assignments completed and checked in time with
marks assigned by the instructor in the index page.

4. Only Set A and B programs are compulsory. Programs in Set C are only for
additional practice.

5. Each assignment will be assessed on a scale of 0 to 5 as indicated below.
 i) Not done 0
 ii) Incomplete 1
 iii) Late Complete 2

 iv) Needs improvement 3
 v) Complete 4
 vi) Well Done 5

 Difficulty Levels

Self Activity : Students should solve these exercises for practice only.
SET A - Easy : All exercises are compulsory.
SET B - Medium : All exercises are compulsory.
SET C - Difficult : Not Compulsory.

 Instruction to the Instructors

1) Make sure that students follow the instruction as given above.
2) Evaluate each assignment on a scale of 5 as specified above by ticking appropriate box.
3) The value should also be entered on assignment completion page of the respective Lab
course.
4) Students can use IDE like Eclipse for performing the assignments.
5) The database used for JDBC assignment should be postgresql.
6) The assignments should be performed on Linux operating system.

 Assignment Completion Sheet

Sr.
No

Assignment Name Marks

1 Collections

2 Database programming

3 Servlets

4 Java Server Pages

5 Multithreading

6 Networking

 Total

 Signature of Incharge

 Date:

Internal Examiner External Examiner

Date:

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 1]

Assignment 1: Collections

Objectives

 Study the Collections framework in java
 Use various collections

Reading

You should read the following topics before starting this exercise:

1. Concept of Collection
2. classes and interfaces in the Collections framework
3. Concept of iterator.
4. Creating and using collections objects.

Ready Reference
A collection is an object that represents a group of objects. A collection — sometimes
called a container — is simply an object that groups multiple elements into a single unit.
Collections are used to store, retrieve, manipulate, and communicate aggregate data.
A collections framework is a unified architecture for representing and manipulating
collections, allowing them to be manipulated independently of the details of their
representation.

It contains the following:
i. Interfaces: Interfaces allow collections to be manipulated independently of the

details of their representation. Interfaces generally form a hierarchy.
ii. Implementations: These are the concrete implementations of the collection

interfaces.
iii. Algorithms: These are the methods that perform useful computations, such as

searching and sorting, on collection objects.
Collection

LinkedListArrayList Vector

List Set

HashSet LinkedHashSet TreeSet

SortedSet

Map

SortedMap

LinkedHashMap TreeSetHashTable HashMap
Interfaces:

Interface Name Description

Collection The most general collection interface type. A collection represents a
group of objects known as its elements. The Java platform doesn't
provide any direct implementations of this interface.

List Represents an ordered collection. Lists can contain duplicate
elements.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 2]

Set Represents an unordered collection that does not permit duplicate
elements.

SortedSet Represents a set whose elements are maintained in a sorted order.

Queue A collection used to hold multiple elements prior to processing.
A Queue provides additional insertion, extraction and inspection
operations.

Map Represents key-value pairs. A Map cannot contain duplicate keys;
each key can map to at most one value. Does not extend collection.

SortedMap Represents a Map that maintains its mappings in ascending key order.

Classes:

Class name Description

AbstractCollection Implements most of the Collection interface.

AbstractList

Extends AbstractCollection and implements most of the List
interface.

AbstractSequentialList

Extends AbstractList for use by a collection that uses
sequential rather than random access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

AbstractSet

Extends AbstractCollection and implements most of the Set
interface.

HashSet Extends AbstractSet for use with a hash table.

TreeSet Implements a set stored in a tree. Extends AbstractSet

The Collection interface:
This interface represents a general collection.

Method Explanation

boolean add(Object element)

Method adds objects in the collection.

boolean remove(Object
element)

Method removes objects in the collection.

The Collection interface also supports query operations:

int size()

Returns the size of the collection.

boolean isEmpty()

Returns true if the collection is empty or false.

 boolean contains(Object
element)

Returns true if the collection contains the element passed in
argument.

Other operations are tasks done on groups of elements or the entire collection at once:

 boolean
containsAll(Collection
collection)

The containsAll() method allows you to discover if the current
collection contains all the elements of another collection, a subset.

boolean addAll(Collection
collection)

ensures all elements from another collection are added to the
current collection, usually a union.

void removeAll(Collection
collection)

method is like clear() but only removes a subset of elements

void retainAll(Collection
collection)

This method is similar to the removeAll() method but does what
might be perceived as the opposite: it removes from the current

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 3]

collection those elements not in the other collection, an
intersection.

 void clear()

removes all elements from the current collection

List interface
A list stores a sequence of elements.

Method Description

void add(int index,
Object element)

Inserts the specified element at the specified position in this
list (optional operation).

 Boolean
addAll(int index,
Collection c)

Inserts all of the elements in the specified collection into this
list at the specified position (optional operation).

 Object get(int index) Returns the element at the specified position in this list.
 int indexOf(Object o)

Returns the index in this list of the first occurrence of the
specified element, or -1 if this list does not contain this
element.

 int
lastIndexOf(Object o)

Returns the index in this list of the last occurrence of the
specified element, or -1 if this list does not contain this
element.

 ListIterator
listIterator()

Returns a list iterator of the elements in this list (in proper
sequence).

 ListIterator
listIterator(int index)

Returns a list iterator of the elements in this list (in proper
sequence), starting at the specified position in this list.

 Object
remove(int index)

Removes the element at the specified position in this list
(optional operation).

 Object set(int index,
Object element)

Replaces the element at the specified position in this list with
the specified element (optional operation).

 int size()

Returns the number of elements in this list.

 List
subList(int fromIndex,
int toIndex)

Returns a view of the portion of this list between the specified
fromIndex, inclusive, and toIndex, exclusive.

Set Interface and SortedSet Interface

A set is a collection that contains no duplicate elements. It contains the methods of the
Collection interface. A SortedSet is a Set that maintains its elements in ascending order.
It adds the following methods:

Method Description
Comparator comparator()

Returns the comparator associated with this
sorted set, or null if it uses its elements'
natural ordering.

Object first() Returns the first (lowest) element currently in
this sorted set.

SortedSet headset(Object
toElement)

Returns a view of the portion of this sorted set
whose elements are strictly less than
toElement.

Object last() Returns the last (highest) element currently in
this sorted set.

SortedSet subset(Object
fromElement, Object toElement)

Returns a view of the portion of this sorted set
whose elements range from fromElement,
inclusive, to toElement, exclusive.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 4]

SortedSet tailSet(Object
fromElement)

Returns a view of the portion of this sorted set
whose elements are greater than or equal to
fromElement.

Map Interface
A Map represents an object that maps keys to values. Keys have to be unique.

Method Description
void clear() Removes all mappings from this map
boolean
 containsKey(Object key)

Returns true if this map contains a mapping for
the specified key.

boolean
 containsValue(Object
value)

Returns true if this map maps one or more keys
to the specified value.

Set entrySet() Returns a set view of the mappings contained in
this map.

boolean equals(Object o) Compares the specified object with this map for
equality.

Object get(Object key) Returns the value to which this map maps the
specified key.

int hashCode() Returns the hash code value for this map.
boolean isEmpty() Returns true if this map contains no key-value

mappings
Set keySet() Returns a set view of the keys contained in this

map.
Object put(Object key,
Object value)

Associates the specified value with the specified
key in this map

void putAll(Map t) Copies all of the mappings from the specified
map to this map

Object remove(Object
key)

Removes the mapping for this key from this map
if it is present (optional operation).

int size() Returns the number of key-value mappings in this
map.

Collection values() Returns a collection view of the values contained
in this map

Implementations

The general-purpose implementations are summarized in the following table.

General-purpose Implementations

Interfaces Implementations

 Hash table Resizable array Tree Linked list Hash table + Linked list

Set HashSet TreeSet LinkedHashSet

List ArrayList LinkedList

Map HashMap TreeMap LinkedHashMap

List Implementations

There are two general-purpose List implementations — ArrayList and LinkedList.

1. ArrayList: Resizable-array implementation of the List interface. Implements all
optional list operations, and permits all elements, including null. Each
ArrayList instance has a capacity. The capacity is the size of the array used to

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 5]

store the elements in the list. It is always at least as large as the list size. As
elements are added to an ArrayList, its capacity grows automatically.

2. LinkedList: The LinkedList class implements the List interface. All of the
operations perform as could be expected for a doubly-linked list. Operations that
index into the list will traverse the list from the beginning or the end, whichever is
closer to the specified index.

ArrayList Method name Description

addAll(int index, Collection c)
Inserts all of the elements in the specified Collection into this list,
starting at the specified position.

ensureCapacity(int minCapacity)
Increases the capacity of this ArrayList instance, if necessary, to
ensure that it can hold at least the number of elements specified
by the minimum capacity argument.

removeRange(int fromIndex,
int toIndex)

Removes from this List all of the elements whose index is
between fromIndex, inclusive and toIndex, exclusive.

trimToSize()
Trims the capacity of this ArrayList instance to be the list's current
size.

LinkedList Method name Description

addFirst(Object o) Inserts the given element at the beginning of this list.

addLast(Object o) Appends the given element to the end of this list.

Object getFirst() Returns the first element in the list

Object getLast() Returns the last element in the list

Object removeFirst() Removes and returns the first element from this list.

Object removeLast() Removes and returns the last element from this list.

ListIterator
listIterator(int index)

 Returns a list-iterator of the elements in this list (in proper
sequence), starting at the specified position in the list.

Set Implementations
There are three general-purpose Set implementations — HashSet, TreeSet, and
LinkedHashSet.

1. TreeSet: The elements are internally stored in a search tree. It is useful when you
need to extract elements from a collection in a sorted manner.

2. HashSet: It creates a collection the uses a hash table for storage. The advantage
of HashSet is that it performs basic operations (add, remove, contains and size)
in constant time and is faster than TreeSet

3. LinkedHashSet: The only difference is that the LinkedHashSet maintains the
order of the items added to the Set, The elements are stored in a doubly linked list.

Iterator:
The Iterator interface provides methods using which we can traverse any collection. This
interface is implemented by all collection classes.

Methods:
hasNext() true if there is a next element in the collection.

next() Returns the next object.

remove() Removes the most recent element that was returned by next()

ListIterator

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 6]

ListIterator is implemented only by the classes that implement the List interface
(ArrayList, LinkedList, and Vector). ListIterator provides the following.

Forward iteration

hasNext() true if there is a next element in the collection.

next() Returns the next object.

Backward iteration

hasPrevious() true if there is a previous element.

previous() Returns the previous element.

Getting the index of an element

nextIndex() Returns index of element that would be returned by subsequent call to next().

previousIndex() Returns index of element that would be returned by subsequent call to previous().

Optional modification methods.

add(obj) Inserts obj in collection before the next element to be returned by next() and after
an element that would be returned by previous().

set() Replaces the most recent element that was returned by next or previous().

remove() Removes the most recent element that was returned by next() or previous().

 HashTable

This class implements a hashtable, which maps keys to values. It is similar to HashMap,
but is synchronized. The important methods of the HashTable class are:

Method name Description

void clear() Clears this hashtable so that it contains no keys.
boolean contains(Object
value) Tests if some key maps into the specified value in this hashtable.

boolean
containsKey(Object key) Tests if the specified object is a key in this hashtable.

containsValue(Object value) Returns true if this Hashtable maps one or more keys to this value.

Enumeration elements() Returns an enumeration of the values in this hashtable.

Set entrySet() Returns a Set view of the entries contained in this Hashtable.

Object get(Object key) Returns the value to which the specified key is mapped in this
hashtable.

int hashCode() Returns the hash code value for this Map as per the definition in the
Map interface.

Boolean isEmpty() Tests if this hashtable maps no keys to values.

Enumeration keys() Returns an enumeration of the keys in this hashtable.

Set keySet() Returns a Set view of the keys contained in this Hashtable.

Object put(Object key,
Object value) Maps the specified key to the specified value in this hashtable.

void putAll(Map m)
Copies all of the mappings from the specified Map to this Hashtable
These mappings will replace any mappings that this Hashtable had
for any of the keys currently in the specified Map.

void rehash() Increases the capacity of and internally reorganizes this hashtable,
in order to accommodate and access its entries more efficiently.

Object remove(Object key) Removes the key (and its corresponding value) from this hashtable.

int size() Returns the number of keys in this hashtable.

Collection values() Returns a Collection view of the values contained in this Hashtable.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 7]

For traversing a HashTable, use the Enumeration interface. The Enumeration interface
has two methods, hasMoreElements and nextElement which are same as the hasNext
and next methods of the Iterator interface.

Self Activity

1. Sample program
/* Program to demonstrate ArrayList and LinkedList */
import java.util.*;
class ArrayLinkedListDemo {

public static void main(String args[])
{

ArrayList al = new ArrayList();
LinkedList l1 = new LinkedList();
System.out.println("Initial size of al: " + al.size());
// add elements to the array list
al.add("A");
al.add("B");
al.add("C");
al.add(2, "AA");
System.out.println("Contents of al: " + al);

al.remove("B");
al.remove(1);
System.out.println("Contents of al: " + al);
 l1.add("A");
 l1.add("B");
 l1.add(new Integer(10));
 System.out.println("The contents of list is " + l1);
 l1.addFirst(“AA”);
 l1.addLast("c");
 l1.add(2,"D");
 l1.add(1,"E");
 l1.remove(3);
 System.out.println("The contents of list is " + l1);
 }
}

2. Sample program
/* Program to demonstrate iterator */
import java.util.*;
public class IteratorDemo
{
 public static void main(String[] args)
{
 ArrayList a1 = new ArrayList();

al.add("C"); al.add("A"); al.add("E"); al.add("B"); al.add("D"); al.add("F");
 Iterator itr = a1.iterator(); //obtain iterator
 while(itr.hasNext())
 {
 String elt = (String)itr.next();
 System.out.println("Element = " + elt);
 }

 LinkedList l = new LinkedList();
 l.add("A"); l.add("B"); l.add("C"); l.add("D");
 ListIterator litr = l.listIterator();
 while(litr.hasNext())
 {
 String elt = (String)litr.next();
 System.out.println(elt);
 }
 System.out.println("Traversing Backwards : ");
 while(litr.hasPrevious())
 System.out.println(litr.previous());
}
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 8]

3. Sample program
/* Program to demonstrate HashTable*/
import java.util.*;
public class HashtableDemo
{
 public static void main(String[] args)
{
 Hashtable hashtable = new Hashtable();
String str, name = null;
hashtable.put("A", 75.2); // adding value into hashtable
hashtable.put("B", 65.9);
hashtable.put("C", 95.1);
hashtable.put("D", 85.7);

System.out.println("Retriving all keys from the Hashtable");
Enumeration keys = hashtable.keys();
while(keys. hasMoreElements())
 System.out.println(keys.nextElement());

 System.out.println("Retriving all values from the table");
Enumeration values = hashtable.elements();
while(values. hasMoreElements())
 System.out.println(values.nextElement());
}
}

Lab Assignments

SET A

1. Accept ‘n’ integers from the user and store them in a collection. Display them in the
sorted order. The collection should not accept duplicate elements. (Use a suitable
collection). Search for an particular element using predefined search method in the
Collection framework.

2. Construct a linked List containing names of colors: red, blue, yellow and orange. Then

extend your program to do the following:
i. Display the contents of the List using an Iterator;
ii. Display the contents of the List in reverse order using a ListIterator;
iii. Create another list containing pink and green. Insert the elements of this list

between blue and yellow.

3. Create a Hash table containing student name and percentage. Display the details of the
hash table. Also search for a specific student and display percentage of that student.

SET B

1. Create a java application to store city names and their STD codes using an appropriate

collection. The GUI ahould allow the following operations:
 i. Add a new city and its code (No duplicates)
 ii. Remove a city from the collection
 iii. Search for a cityname and display the code

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 9]

SET C
1. Read a text file, specified by the first command line argument, into a list. The
program should then display a menu which performs the following operations on the list:
1. Insert line 2. Delete line 3. Append line 4. Modify line 5. Exit
When the user selects Exit, save the contents of the list to the file and end the program.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 10]

Assignment 2: Database Programming

Objectives

 To communicate with a database using java.
 To execute queries on tables.
 To obtain information about the database and tables

Reading

You should read the following topics before starting this exercise:

1. The JDBC driver types
2. The design of JDBC
3. Statement, PreparedStatement, ResultSet
4. DatabaseMetaData and ResultSetMetaData

Ready Reference

JDBC : Java Database Connectivity
This API contains of a set of classes and interfaces to enable programmers to
communicate with a database using java. These classes and interfaces are in the java.sql
package.
The JDBC API makes it possible to do three things:

i. Establish a connection with a data source.
ii. Send queries and update statements to the data source.
iii. Process the results.

The classes and interfaces in the java.sql package are given below.

Interface Name Description
Array Maps to the SQL type ARRAY
Blob Represents SQL BLOB Value
CallableStatement To execute SQL stored procedures.
Clob Represents SQL CLOB type
Connection Represents a connection session with the database
DatabaseMetaData Information about the database
Driver Interface that every driver class must implement
ParameterMetaData Information about parameters in PreparedStatement object
PreparedStatement Represents precompiled SQL statement
Ref Maps to SQL REF type
ResultSet Table of data generated by executing a database query
ResultSetMetaData Information about columns in a ResultSet
Savepoint The representation of a savepoint, which is a point within the current transaction.
SQLData For custom mapping of an SQL user-defined type (UDT) to a class in the Java

programming language.
SQLInput An input stream that contains a stream of values representing an instance of an

SQL structured type.
SQLOutput The output stream for writing the attributes of a user-defined type back to the

database.
Statement For executing a static SQL statement and returning the results it produces.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 11]

Struct Maps to an SQL structured type.

Class Name Description

Date Represents an SQL DATE value.

DriverManager The basic service for managing a set of JDBC drivers.

DriverPropertyInfo Driver properties for making a connection.

SQLPermission
The permission for which the SecurityManager will check when code that is
running in an applet calls the DriverManager.setLogWriter method or
the DriverManager.setLogStream (deprecated) method.

Time Represents an SQL TIME value.

Timestamp Represents an SQL TIMESTAMP value.

Types Defines constants that are used to identify generic SQL types, called JDBC types.

JDBC Drivers

To communicate with a database, you need a database driver. There are four types of
drivers:
1. Type 1: JDBC-ODBC Bridge driver
2. Type 2: Native-API partly-Java driver:
3. Type 3: JDBC-Net pure Java driver:
4. Type 4: Native-protocol pure Java driver:

For postgresql, use the driver:
org.postgresql.Driver

To load the driver, use the following command:

Class.forName(“driverName”);

Example:
Class.forName(“org.postgresql.Driver”);

Establishing a connection
To establish a connection with the database, use the getConnection method of the
DriverManager class. This method returns a Connection object.

DriverManager.getConnection(“url”, “user”, “password”);

Example:
Connection conn = DriverManager.getConnection
(“jdbc:postgresql://192.168.100.4/TestDB”, “scott”, “tiger”);

Methods of Connection class:

 void close() Releases this Connection object's database and JDBC resources
immediately instead of waiting for them to be automatically released.

 void commit() Makes all changes made since the previous commit/rollback permanent
and releases any database locks currently held by this Connection
object.

 Statement
createStatement()

Creates a Statement object for sending SQL statements to the database.

 Statement
createStatement(int Creates a Statement object that will generate ResultSet objects

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 12]

resultSetType,
int resultSetConcurr
ency)

with the given type and concurrency.

 Boolean
getAutoCommit() Retrieves the current auto-commit mode for this Connection object.

 DatabaseMetaData
getMetaData()

Retrieves a DatabaseMetaData object that contains metadata about
the database to which this Connection object represents a connection.

 CallableStatement
prepareCall(String s
ql)

Creates a CallableStatement object for calling database stored
procedures.

 CallableStatement
prepareCall(String s
ql,
int resultSetType,
int resultSetConcurr
ency)

Creates a CallableStatement object that will generate ResultSet
objects with the given type and concurrency.

 PreparedStatement
prepareStatement(Str
ing sql)

 Creates a PreparedStatement object for sending parameterized
SQL statements to the database.

 PreparedStatement
prepareStatement(Str
ing sql,
int resultSetType,
int resultSetConcurr
ency)

Creates a PreparedStatement object that will generate ResultSet
objects with the given type and concurrency.

 void rollback() Undoes all changes made in the current transaction and releases any
database locks currently held by this Connection object.

 void
setAutoCommit(boolea
n autoCommit)

 Sets this connection's auto-commit mode to the given state.

Executing Queries

To execute an SQL query, you have to use one of the following classes:
 Statement
 PreparedStatement
 CallableStatement

A Statement represents a general SQL statement without parameters. The method
createStatement() creates a Statement object. A PreparedStatement represents a
precompiled SQL statement, with or without parameters. The method
prepareStatement(String sql) creates a PreparedStatement object. CallableStatement
objects are used to execute SQL stored procedures. The method prepareCall(String sql)
creates a CallableStatement object.

Executing a SQL statement with the Statement object, and returning a jdbc
resultSet.

To execute a query, call an execute method from Statement such as the following:

 execute: Use this method if the query could return one or more ResultSet
objects.

 executeQuery: Returns one ResultSet object.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 13]

 executeUpdate: Returns an integer representing the number of rows affected by
the SQL statement. Use this method if you are using INSERT, DELETE, or UPDATE
SQL statements.

Examples:
ResultSet rs = stmt.executeQuery(“SELECT * FROM Student”);
int result = stmt.executeUpdate(“Update authors SET name = ‘abc’ WHERE id =
1”);
boolean ans = stmt.execute(“DROP TABLE IF EXISTS test”);

ResultSet provides access to a table of data generated by executing a Statement. The
table rows are retrieved in sequence. A ResultSet maintains a cursor pointing to its
current row of data. The next() method is used to successively step through the rows of
the tabular results.

Examples:
Statement stmt = conn.prepareStatement();
ResultSet rs = stmt.executeQuery(“Select * from student”);
while(rs.next())
{
 //access resultset data
}
To access these values, there are getXXX() methods where XXX is a type for example,
getString(), getInt() etc. There are two forms of the getXXX methods:
i. Using columnName: getXXX(String columnName)
ii. Using columnNumber: getXXX(int columnNumber)
Example

rs.getString(“stuname”));
rs.getString(1); //where name appears as column 1 in the ResultSet

Using PreparedStatement

These are precompiled sql statements. For parameters, the SQL commands in a
PreparedStatement can contain placeholders which are represented by ‘?’ in the SQL
command.
 Example
 String sql = “UPDATE authors SET name = ? WHERE id = ?”;
 PreparedStatement ps = conn.prepareStatement(sql);

Before the sql statement is executed, the placeholders have to be replaced by actual
values. This is done by calling a setXXX(int n, XXX x) method, where XXX is the
appropriate type for the parameter for example, setString, setInt, setFloat, setDate etc, n is
the placeholder number and x is the value which replaces the placeholder.

Example
String sql = “UPDATE authors SET name = ? WHERE id = ?”;
PreparedStatement ps = conn.prepareStatement(sql);
ps.setString(1,’abc’); //assign abc to first placeholder
ps.setInt(2,123); //assign 123 to second placeholder

ResultSet Scroll Types and Concurrency

The scroll type indicates how the cursor moves in the ResultSet. The concurrency type
affects concurrent access to the resultset. The types are given in the table below.

Scroll Type

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 14]

TYPE_FORWARD_ONLY The result set is not scrollable.
TYPE_SCROLL_INSENSITIVE The result set is scrollable but not sensitive to database

changes.
TYPE_SCROLL_SENSITIVE The result set is scrollable and sensitive to database

changes.

Concurrency Type
CONCUR_READ_ONLY The result set cannot be used to update the database.
CONCUR_UPDATABLE The result set can be used to update the database.

Example:
Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

ResultSet Interface

The ResultSet interface provides methods for retrieving and manipulating the results of
executed queries.

Method Name Description

beforeFirst() Default position. Puts cursor before 1st row of ResultSet.

first() Puts cursor on 1st row of ResultSet.
last() Puts cursor on last row of ResultSet.

afterLast() Puts cursor after/beyond last row of ResultSet.

absolute (int pos) Puts cursor at row number position where absolute (1) is a 1st row and
absolute (-1) is last row of ResultSet.

relative (int pos) Puts cursor at row no. position relative from current position.

next() To move to the next row in ResultSet

previous() To move to the previous row in ResultSet.

void close() To close the ResultSet.

deleteRow() Deletes the current row from the ResultSet and underlying database.

getRow() Retrieves the current row number

insertRow() Inserts the contents of the insert row into the ResultSet object and into
the database.

refreshRow() Refreshes the current row with its most recent value in the database.

updateRow() Updates the underlying database with the new contents of the current
row of this ResultSet object.

getXXX(String
columnName)

Retrieves the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

moveToInsertRow() Moves the cursor to the insert row.

close() Disposes the ResultSet.

isFirst() Tests whether the cursor is at the first position.

isLast() Tests whether the cursor is at the last position

isBeforeFirst() Tests whether the cursor is before the first position

isAfterLast() Tests whether the cursor is after the last position

updateXXX(int
columnNumber, XXX
value)

Updates the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

updateXXX(String
columnName, XXX
value)

Updates the value of the designated column in the current row as a
corresponding type in the Java programming language. XXX
represents a type: Int, String, Float, Short, Long, Time etc.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 15]

DatabaseMetaData

This interface provides methods that tell you about the database for a given connection
object.

Method Name Description

getDatabaseProductName() Retrieves the name of this database product.
getDatabaseProductVersion() Retrieves the version number of this database

product.
getDriverName() Retrieves the name of this JDBC driver.
getDriverVersion() Retrieves the version number of this JDBC driver as

a String.
getUserName() Retrieves the user name as known to this database.
getCatalogs() Retrieves the catalog names available in this

database.
getSchemas(String catalog, String
schemaPattern)

Retrieves the schema names available in this
database.

getTables(String catalog, String
schemaPattern, String
tableNamePattern, String[] types)

Retrieves a description of the tables available in the
given catalog.

getPrimaryKeys(String catalog, String
schema, String table)

Retrieves a description of the given table's primary
key columns.

getExportedKeys(String catalog,
String schema, String table)

Retrieves a description of the foreign key columns
that reference the given table's primary key
columns (the foreign keys exported by a table).

getImportedKeys(String catalog,
String schema, String table)

Retrieves a description of the primary key columns
that are referenced by a table's foreign key columns
(the primary keys imported by a table).

getColumns(String catalog, String
schemaPattern, String
tableNamePattern, String
columnNamePattern)

Retrieves a description of table columns available in
the specified catalog.

getProcedures(String catalog,
String schemaPattern,
String procedureNamePattern)

Retrieves a description of the stored procedures
available in the given catalog.

getFunctions(String catalog, String
schemaPattern, String
functionNamePattern)

Retrieves a description of the system and user
functions available in the given catalog.

Example:
DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getTables(null, null, null,new String[] {"TABLE"});
while (rs.next())
 System.out.println(rs.getString("TABLE_NAME"));

ResultSetMetaData

The ResultSetMetaData interface provides information about the structure of a particular
ResultSet.

Method Name Description

getColumnCount() Returns the number of columns in the current ResultSet
object.

getColumnDisplaySize(int column) Gives the maximum width of the column specified by the
index parameter.

getColumnLabel(int column) Gives the suggested title for the column for use in display
and printouts.

getColumnName(int column) Gives the column name associated with the column index.
getColumnTypeName(int column) Gives the designated column's SQL type.
isReadOnly(int column) Indicates whether the designated column is read-only.
isWritable(int column) Indicates whether you can write to the designated column.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 16]

isNullable(int column) Indicates the nullability of values in the designated
column.

Example:
ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
int noOfColumns = rsmd.getColumnCount();
System.out.println("Number of columns = " + noOfColumns);
for(int i=1; i<=noOfColumns; i++)
{
 System.out.println("Column No : " + i);
 System.out.println("Column Name : " + rsmd.getColumnName(i));
 System.out.println("Column Type : " + rsmd.getColumnTypeName(i));
 System.out.println("Column display size : " + rsmd.getColumnDisplaySize(i));
}

Self Activity

1. Sample program to display employee data (id, name, salary)
import java.sql.*;
import java.io.*;
class JDBCDemo
{
 public static void main(String[] args) throws SQLException
 {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 try
 {
 Class.forName("org.postgresql.Driver");
 conn =
DriverManager.getConnection("jdbc:postgresql://192.168.100.254/employeeDB","student","");
 if(conn==null)
 System.out.println("Connection failed ");
 else
 {
 System.out.println(“Connection successful..”);
 stmt = conn.createStatement();

rs = stmt.executeQuery("Select * from emp");
while(rs.next())
{
System.out.print("ID = " + rs.getInt(1));
System.out.println("Name = " + rs.getString(2));
System.out.println("Salary = " + rs.getInt(3));
}
conn.close();

}
}

 catch(Exception e)
 { System.out.println(e);}
 }
}// end of class

2. Sample program to perform insert and delete operations on employee table using
PreparedStatement (id, name, salary)
import java.sql.*;
import java.io.*;
class JDBCDemoOp
{
 public static void main(String[] args) throws SQLException
 {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
PreparedStatement ps1 = null, ps2=null;
int id, sal;
String name;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
Class.forName("org.postgresql.Driver");
conn =

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 17]

DriverManager.getConnection("jdbc:postgresql://192.168.100.254/employeeDB","student","");
stmt = conn.createStatement();
ps1 = conn.prepareStatement("Insert into employee values(?,?,?)");
ps2 = conn.prepareStatement("Delete employee where ID = ?");
if(conn!=null)

System.out.println("Connection successful..");
System.out.println("Enter the ID, name and salary to be inserted ");
id = Integer.parseInt(br.readLine());
name = br.readLine();
sal = Integer.parseInt(br.readLine());
ps1.setInt(1,id); ps1.setString(2,name);ps1.setInt(3,sal);
ps1.executeUpdate();

System.out.println("Enter the ID to be deleted ");
id = Integer.parseInt(br.readLine());
ps2.setInt(1,id);
ps2.executeUpdate();
conn.close();

 }
}// end of class

Lab Assignments

SET A

1. Create a student table with fields roll number, name, percentage. Insert values in the
table. Display all the details of the student table in a tabular format on the screen (using
swing).

2. Write a program to display information about the database and list all the tables in the
database. (Use DatabaseMetaData).

3. Write a program to display information about all columns in the student table. (Use
ResultSetMetaData).

SET B
1. Write a menu driven program (Command line interface) to perform the following
operations on student table.
 1. Insert 2. Modify 3. Delete 4. Search 5. View All 6. Exit

2. Design a following Phone Book Application Screen using swing & write a code for

various operations like Delete, Update, Next, Previous. Raise an appropriate
exception if invalid data is entered like name left blank and negative phone Number.

NAME

ADDRESS

PHONE

EMAIL

DELETE UPDATE<< >> EXIT

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 18]

SET C

1. Create tables : Course (id, name, instructor) and Student (id, name). Course and
Student have a many to many relationship. Create a GUI based system for performing the
following operations on the tables:

Course: Add Course, View All students of a specific course
Student: Add Student, Delete Student, View All students, Search student

2. Design a GUI to perform the following operations on Telephone user data.
i. Add record ii. Display current bill
Add record stores the details of a telephone user in a database. User has the following
attributes: User (id, name, telephone number, number of calls, month, year).
Display current bill should Calculate and display the bill for a specific user (search by
name or phone number) using the following rules. Provide button to Search user on basis
of telephone number or name.
Rules: The first 100 calls are free and rent is Rs. 300)

No. Of Calls Charge (per call)
> 100 and <=500 Rs. 1.00
> 500 Rs. 1.30

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 19]

Assignment 3: Servlets

Objectives

 To understand server-side programming
 Defining and executing servlets

Reading

You should read the following topics before starting this exercise:

1. Concept of servlet
2. Difference between applet and servlet
3. Introduction to Servlet (HTTP Servlet)
4. Lifecycle of a Servlet
5. Handling Get and Post requests (HTTP)
6. Data Handling using Servlet
7. Creating Cookies
8. Session Tracking using HTTP Servlet

Ready Reference

What are servlets?
Servlets are small programs that execute on the server side. Servlets are pieces of Java
source code that add functionality to a web server

Servlet provides full support for sessions, a way to keep track of a particular user over
time as a website’s pages are being viewed. They also can communicate directly with a
web server using a standard interface.

Servlets can be created using the javax.servlet and javax.servlet.http packages, which
are a standard part of the Java’s enterprise edition, an expanded version of the Java class
library that supports large-scale development projects.

Running servlets requires a server that supports the technologies. Several web servers,
each of which has its own installation, security and administration procedures, support
Servlets. The most popular one is the Tomcat- an open source server developed by the
Apache Software Foundation in cooperation with Sun Microsystems version 5.5 of
Tomcat supports Java Servlet.

Getting Tomcat
The software is available a a free download from Apache’s website at the address
http://jakarta.apache.org/tomcat. Several versions are available: Linux users should
download the rpm of Tomcat.

The javax.servlet package
The important interfaces and classes are described in the table below.

Interface Description

Servlet
A java servlet must implement the Servlet interface. This interface defines
methods to initialize a servlet, to service requests, and to remove a servlet
from the server. These are known as life-cycle methods.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 20]

ServletConfig
The ServletConfig interface is used by the server to pass configuration
information to a servlet. Its methods are used by the servlet to retrieve this
information.

ServletRequest
The ServletRequest interface encapsulates a client request for service. It
defines a number of methods for obtaining information about the server,
requester, and request.

ServletResponse The ServletResponse interface is used by a servlet to respond to a request
by sending information back to the client.

ServletContext
The ServletContext interface defines the environment in which an applet is
executed. It provides methods that are used by applets to access
environment information.

SingleThreadModel

The SingleThreadModel interface is used to identify servlets that must be
thread-safe. If a servlet implements this interface, the Web server will not
concurrently execute the service() method of more than one instance of the
servlet.

Class Description

GenericServlet The GenericServlet class implements the Servlet interface. You can subclass
this class to define your own servlets.

ServletInputStream
The ServletInputStream class is used to access request information supplied
by a Web client. An object of this class is returned by the getInputStream()
method of the ServletRequest interface.

ServletOutputStream
The ServletOutputStream class is used to send response information to a
Web client. An object of this class is returned by the getOutputStream()
method of the ServletResponse interface.

The javax.servlet.http package

Interface Description

HttpServletRequest The HttpServletRequest interface extends the ServletRequest interface and
adds methods for accessing the details of an HTTP request.

HttpServletResponse The HttpServletResponse interface extends the ServletResponse interface
and adds constants and methods for returning HTTP-specific responses.

HttpSession

This interface is implemented by servlets to enable them to support browser-
server sessions that span multiple HTTP request-response pairs. Since
HTTP is a stateless protocol, session state is maintained externally using
client-side cookies or URL rewriting. This interface provides methods for
reading and writing state values and managing sessions.

HttpSessionContext This interface is used to represent a collection of HttpSession objects that are
associated with session IDs.

Class Description

HttpServlet Used to create HTTP servlets. The HttpServlet class extends the
GenericServlet class.

Cookie

This class represents an HTTP cookie. Cookies are used to maintain session
state over multiple HTTP requests. They are named data values that are
created on the Web server and stored on individual browser clients. The
Cookie class provides the method for getting and setting cookie values and
attributes.

Servlet Life Cycle
A servlet’s life cycle methods function similarly to the life cycle methods of applets.

 The init(ServletConfig) method is called automatically when a web server first
begins a servlet to handle the user’s request. The init() method is called only once.
ServletConfig is an interface in the javax.servlet package, containing the methods
to find out more about the environment in which a servlet is running.

 The servlet action is in the service() method. The service() method checks the
HTTP request type (GET, POST, PUT, DELETE etc.) and calls doGet(), doPost(),

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 21]

doPut(), doDelete() etc. methods. A GET request results from normal request for a
URL or from an HTML form that has no METHOD specified. The POST request
results from an HTML form that specifically lists POST as the METHOD.

 The destroy() method is called when a web server takes a servlet offline.

Using Servlets
One of the main tasks of a servlet is to collect information from a web user and present
something back in response. Collection of information is achieved using form, which is a
group of text boxes, radio buttons, text areas, and other input fields on the web page. Each
field on a form stores information that can be transmitted to a web server and then sent to
a Java servlet. web browsers communicate with servers by using Hypertext Transfer
Protocol (HTTP).

 Form data can be sent to a server using two kinds of HTTP requests: get and post.
When web page calls a server using get or post, the name of the program that
handles the request must be specified as a web address, also called uniform
resource locator (URL). A get request affixes all data on a form to the end of a
URL. A post request includes form data as a header and sent separately from the
URL. This is generally preferred, and it’s required when confidential information
is being collected on the form.

 Java servlets handle both of these requests through methods inherited from the
HTTPServlet class: doGet(HttpServletRequest, HttpServletResponse) and
doPost(HttpServletRequest, HttpServletResponse). These methods throw two
kinds of exceptions: ServletException, part of javax.servlet package, and
IOException, an exception in the java.io package.

 The getparameter(String) method is used to retrieve the fields in a servlet with
the name of the field as an argument. Using an HTML document a servlet
communicates with the user.

 While preparing the response you have to define the kind of content the servlet is
sending to a browser. The setContentType(String) method is used to decide the
type of response servlet is communicating. Most common form of response is
written using an HTML as: setContentType(“text/html”).

 To send data to the browser, you create a servlet output stream associated with
the browser and then call the println(String) method on that stream. The
getWriter() method of HttpServletResponse object returns a stream. which can be
used to send a response back to the client.

Example

import java.io.*;
import javax.servlet.* ;
import javax.servlet.http.*;
public class MyHttpServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException, IOException
{
 // Use “req” to read incoming request
 // Use “res” to specify the HTTP response status
 //Use req.getParameter(String) or getParameterValues(String) to obtain
parameters
 PrintWriter out = res.getWriter();//stream for output
 // Use "out" to send content to browser
 }
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 22]

Request and Response methods

ServletRequest methods

String
getParameter(String name
)

Obtains the value of a parameter sent to the servlet as part
of a get or post request.
The name argument represents the parameter name.

Enumeration
getParameterNames()

Returns the names of all the parameters sent to the servlet
as part of a post request.

String[]getParameterValu
es(String name)

For a parameter with multiple values, this method Returns
an array of strings containing the values for a specified
servlet parameter.

String getProtocol() Returns the name and version of the protocol the request
uses in the form protocol/majorVersion.minorVersion, for
example, HTTP/1.

String getRemoteAddr() Returns the Internet Protocol (IP) address of the client that
sent the request.

String getRemoteHost() Returns the fully qualified name of the client that sent the
request.

String getServerName() Returns the host name of the server that received the
request.

int getServerPort() Returns the port number on which this request was
received.

HttpServletRequest methods

Cookie[] getCookies() Returns an array of Cookie objects stored on the client by
the server.

HttpSession getSession(
boolean create)

Returns an HttpSession object associated with the
client's current browsing session. This method can create
an HttpSession object (True argument) if one does
not already exist for the client.

String getServletPath() Returns the part of this request's URL that calls the servlet.

String getMethod() Returns the name of the HTTP method with which this
request was made, for example, GET, POST, or PUT.

String getQueryString() Returns the query string that is contained in the request
URL after the path.

String getPathInfo() Returns any extra path information associated with the URL
the client sent when it made this request.

String getRemoteUser() Returns the login of the user making this request, if the user
has been authenticated, or null if the user has not been
authenticated.

ServletResponse methods
ServletOutputStream
getOutputStream()

Obtains a byte-based output stream for sending binary data
to the client.

PrintWriter getWriter() Obtains a character-based output stream for sending text
data (usually HTML formatted text) to the client.

void
setContentType(String
type)

Specifies the content type of the response to the browser.
The content type is also known as MIME (Multipurpose
Internet Mail Extension) type of the data. For examples,
"text/html" , "image/gif" etc.

String
setContentLength(int
len)

Sets the length of the content body in the response In
HTTP servlets, this method sets the HTTP Content-Length
header.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 23]

HttpServletResponse methods

void addCookie(Cookie
cookie)

Used to add a Cookie to the header of the response to
the client.

void sendError(int ec) Sends an error response to the client using the specified
status.

void sendError(int ec,
String messg)

Sends an error response to the client using the specified
status code and descriptive message.

void sendRedirect(Stirng
url)

Sends a temporary redirect response to the client using the
specified redirect location URL.

void setHeader(String
name, String value)

Sets a response header with the given name and value.

Writing, Compiling and Running Servlet
Type the first sample program of the self-activity section. After saving this
servlet,compile it with the Java compiler as: javac SimpleServlet.java. After compilation
a class file with name SimpleServlet.class is created.

To make the servlet available, you have to publish this class file in a folder on your web
server that has been designated for Java servlets. Tomcat provides the classes sub-folder
to deploy this servlet’s class file. Copy this class file in this classes sub-folder, which is
available on the path: tomcat/webapps/ WEB-INF/classes. Now edit the web.xml file
available under WEB-INF sub-folder with the following lines:

<servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>SimpleServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet</url-pattern>
</servlet-mapping>

Repeat the above sequence of line to run every newly created servlet. Remember, these
line lines must be placed somewhere after the <web-app> tag and before the closing
</web-app> tag.

After adding these lines, save web.xml file. Restart the Tomcat service and run the servlet
by loading its address with a web browser as: http://localhost:8080/FirstServlet.

Using MySQL – Database Connectivity tool with servlets
Java’s Servlet also provides support for data handling using MySQL database. For this
you have to do few simple steps.
1. Copy the jar file mentioned in Database Connectivity assignment into the subfolder:

tomcat/lib/common.
2. Edit the file .bash_profile of your login using command: vi .bash_profile.
3. Add the following line without removing any line.

export CLASSPATH=$CLASSPATH:/$HOME/tomcat/common/lib/<jar file> used
in database connectivity assignment.
Example: if I have mysql-connector-java-5.1.6.jar file, I will type the line as
export CLASSPATH=$CLASSPATH:/$HOME/tomcat/common/lib/mysql-connector-
java-5.1.6.jar

4. Save this file. Logout from the terminal and re-login.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 24]

5. Create the table student(rno, sname) in your database. Insert few records into this
table.

Session Handling

1. Using cookies
2. Using HttpSession class

1. Using Cookies
To keep the track of information about you and the features you want the site to display.
This customization is possible because of a web browser features called cookies, small
files containing information that a website wants to remember about a user, like
username, number of visits, and other. The files are stored on the user’s computer, and a
website can read only the cookies on the user’s system that the site has created. The
default behavior of all the web browsers is to accept all cookies.

The javax.servlet.http.Cookie class allows us to create a cookie and send it to the
browser. The methods are:

Method Description

int getMaxAge()
Returns the maximum age of the cookie, specified in seconds, By
default, -1 indicating the cookie will persist until browser
shutdown.

String getName() Returns the name of the cookie.

String getValue() Returns the value of the cookie.

void setMaxAge(int
s) Sets the maximum age of the cookie in seconds.

void setValue
(String value) Assigns a new value to a cookie after the cookie is created.

 The Cookie class in the javax.servlet.http package supports cookies. To create a

cookie, call the Cookie(String,String) constructor. The first argument is the name
you want to give the Cookie, and the second is the cookie’s value.

 To send a cookie, call the addCookie(Cookie) method of an HttpServletResponse
object. You can add more than one cookie to a response.

 In a servlet,call the getCookies() method of an HttpServletRequest object to
receive an array of Cookie objects. Use getName() and getValue() methods to find
out about cookie.

2.HttpSession class

Servlet can retain the state of user through HttpSession, a class that represents sessions.
There can be one session object for each user running your servlet.

 A user’s session can be created or retrieved by calling the getSession(Boolean)
method of the servlet’s request object. Use an argument true if a session should be
created when one doesn’t already exist for the user.

Example: HttpSession state=req.getSession(true);

public void doGet (HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
{
 HttpSession session = req.getSession(true);
// ...
}

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 25]

 Objects held by session are called its attributes. Call the session’s
setAttribute(String, Object) method with two arguments: a name to give the
attribute and the object.

 To retrieve an attribute, call the getAttribute(String) method with its name as the
only argument. It returns the object, which must be cast from object to the desired
class, or null if no attribute of that name exists.

 To remove an attribute when it’s no longer needed, call removeAttribute(String)
with its name as the argument.

Method Description

Object getAttribute(String
name)

Returns the object bound with the specified name in this
session, or null if no object is bound under the name.

Enumeration
getAttributeNames()

Returns an Enumeration of String objects
containing the names of all the objects bound to this
session.

long getCreationTime()
Returns the time when this session was created,
measured in milliseconds since midnight January 1, 1970
GMT.

long getLastAccessedTime()

Returns the last time the client sent a request associated
with this session, as the number of milliseconds since
midnight January 1, 1970 GMT, and marked by the time
the container received the request.

int
getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the
servlet container will keep this session open between
client accesses.

void
RemoveAttribute(String
name)

Removes the object bound with the specified name from
this session.

void setAttribute(String
name, Object value) Binds an object to this session, using the name specified.

void
setMaxInactiveInterval(int
seconds)

Specifies the time, in seconds, between client requests
before the servlet container will invalidate this session.

void invalidate() Invalidates this session then unbinds any objects bound
to it.

Boolean isNew() Returns true if it is a new session.

String getId() Returns a string containing the unique identifier
assigned to this session.

Self Activity

1. Sample program
/* Program for simple servlet*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet
{
 public void service(HttpServletRequest req, HttpServletResponse rs)
 throws ServletException, IOException
 {
 rs.setContentType("text/html");
 PrintWriter pw=rs.getWriter();
 pw.println("<html>");
 pw.println("<body>");
 pw.println("Hello, Welcome to Java Servlet’s");

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 26]

 pw.println("</body>");
 pw.println("</html>");
 pw.close();
 }
}

After saving this servlet, compile it with the Java compiler as: javac SimpleServlet.java.
Run the servlet using http://server-ip:8080/SimpleServlet

2. Sample program to read two numbers and return their sum
// Save the following code as Sum.html
<html>
<head>
<title></title>
</head>
<body>
<form method="post" action="http://server-ip:8080/AddServlet">
Enter the Number1 <input type="text" name="No1">
Enter the Number2 <input type="text" name="No2">

<input type="Submit">
</form>
</body>
</html>

// Save the following code as AddServlet.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddServlet extends HttpServlet{
 public void doGet(HttpServletRequest req,HttpServletResponse
res)
 throws ServletException, IOException{

 int no1=Integer.parseInt(req.getParameter("No1"));
 int no2=Integer.parseInt(req.getParameter("No2"));
 int total=no1+no2;

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.println("<h1> ans </h1> <h3>"+total+"</h3>");
 pw.close();
 }
}

3. Sample program for database handling using servlet

//Create a student table (rno, name)
//The servlet displays all records from the student table on the client machine.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class ServJdbc extends HttpServlet{

 String qry;
 ResultSet rs;
 Statement st;

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 27]

 Connection cn;
 String ename,sal;

 public void init()
 {
 try{
 Class.forName("org.gjt.mm.mysql.Driver");

 cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/root","root","");
 }
 catch(ClassNotFoundException ce){}
 catch(SQLException se){}

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 try{

 qry="Select * from student";
 st=cn.createStatement();
 rs=st.executeQuery(qry);

 while(rs.next())
 {
 pw.print("<table border=1>");
 pw.print("<tr>");
 pw.print("<td>" + rs.getInt(1) + "</td>");
 pw.print("<td>" + rs.getString(2) + "</td>");
 pw.print("</tr>");
 pw.print("</table>");
 }
 }
 catch(Exception se){}
 pw.close();
 }
}

Run this program as http://server-ip:8080/ServJdbc

4. Sample program for cookies

/*Save this program as AddCookie.java
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookie extends HttpServlet{

 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 Cookie c1=new Cookie("Cookie1","1");
 res.addCookie(c1);
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 pw.print("Cookie added with value 1);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 28]

 Cookie c2=new Cookie("Cookie2","2");
 res.addCookie(c2);
 pw.print("Cookie added with value 2);
 pw.close();
 }
}

/* Save this program as GetCookie.java */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookie extends HttpServlet{

 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 Cookie [] c=req.getCookies();
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();
 for(int i=0;i<c.length;i++)
 pw.println("Cookie Name"+c[i].getName());
 pw.close();
 }
}
Run this program as http://server-ip:8080/AddCookie
Run this program as http://server-ip:8080/GetCookie
5. Sample program for sessions

/* Program for Session using Servlet
Save this program as SessionDemo.java
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class SessionDemo extends HttpServlet{

 String result1="success";
 String result2="failure";
 public void doGet(HttpServletRequest req,HttpServletResponse
res)
 throws ServletException, IOException{

 HttpSession hs=req.getSession(true);

 String lname=req.getParameter("txt1");
 String pwd=req.getParameter("txt2");

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 if((lname.equals("BCS"))&&(pwd.equals("CS")))
 {
 pw.print("
Login Success");
 hs.setAttribute("loginID",result1);

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 29]

 }
 else
 {
 pw.print("
Kick Out");
 hs.setAttribute("loginID",result2);
 }
 pw.close();
 }
}
<!—HTML File for NewInfo.html -->
<html>
<head>
<title></title>
</head>
<body>
<form method="post" action="http://localhost:8080/SessionInfo">
<input type="Submit" value=”Read Session Value”>
</form>
</body>
</html>

/*Save this program as SessionInfo.java */

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionInfo extends HttpServlet{
 String readloginid;
 public void doGet(HttpServletRequest req,HttpServletResponse
res) throws ServletException, IOException{

 HttpSession hs=req.getSession(true);
 readloginid=hs.getId();

 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 if(hs.getAttribute("loginID").equals("success"))
 pw.print("Your Session ID " + readloginid);
 else
 pw.print("<h1>Session Expired </h1>");
 pw.close();
 }
}

Create an html file for login and password and use http://server-ip:8080/SessionDemo in
the Form Action tag.

Lab Assignments

SET A

1. Design a servlet that provides information about a HTTP request from a client, such as
IP address and browser type. The servlet also provides information about the server on
which the servlet is running, such as the operating system type, and the names of
currently loaded servlets.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 30]

2. Write a servlet which counts how many times a user has visited a web page. If the user
is visiting the page for the first time, display a welcome message. If the user is re-visiting
the page, display the number of times visited. (Use cookies)

3. Design an HTML page which passes student roll number to a search servlet. The
servlet searches for the roll number in a database (student table) and returns student
details if found or error message otherwise.

SET B

1. Write a program to create a shopping mall. User must be allowed to do purchase from

two pages. Each page should have a page total. The third page should display a bill,
which consists of a page total of what ever the purchase has been done and print the
total. (Use HttpSession)

2. Design an HTML page containing 4 option buttons (Painting, Drawing, Singing
and swimming) and 2 buttons reset and submit. When the user clicks submit, the server
responds by adding a cookie containing the selected hobby and sends a message back to
the client. Program should not allow duplicate cookies to be written.

Set B: Additional Programs For Practice

1. Design the table Login(login_name, password) using MySQL. Also design an
HTML login screen. Accept the login name and password from the user. The
servlet accepts the login name and password and validates it from the database
you have created. The servlet sends back an appropriate response. Also calculate
the number of time that user has successfully performed the login activity. Use
cookies.

SET C

1. Consider the following entities and their relationships

Movie (movie_no, movie_name, release_year)
Actor(actor_no, name)
Relationship between movie and actor is many – many with attribute rate in Rs.
Create a RDB in 3 NF answer the following:
a) Accept an actor name and display all movie names in which he has acted along

with his name on top.
b) Accept a movie name and list all actors in that movie along with the movie name

on top.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 31]

Assignment 4: Java Server Pages

Objectives

 To demonstrate the use of JSP

Reading

You should read the following topics before starting this exercise

1. Concept of Servlets.
2. JSP life-cycle.
3. JSP Directives
4. Scripting elements.
5. Actions in JSP.

Ready Reference

 What is JSP?
JSP is Java Server Page, which is a dynamic web page and used to build dynamic
websites. To run jsp, we need web server which can be tomcat provided by apache, it can
also be jRun, jBoss(Redhat), weblogic (BEA) , or websphere(IBM).

 JSP is dynamic file whereas Html file is static. HTML can not get data from database or
dynamic data. JSP can be interactive and communicate with database and controllable by
programmer. It is saved by extension of .jsp. Each Java server page is compiled into a
servlet before it can be used. This is normally done when the first request to the JSP page
is made.

A JSP contains 3 important types of elements:-

1. Directives:- these are messages to the JSP container that is the server program that
executes JSPs.

2. Scripting elements:- These enables programmers to insert java code which will be a
part of the resultant servlet.

3. Actions:- Actions encapsulates functionally in predefined tags that programmers can
embedded in a JSP.

JSP Directives:-
Directives are message to the JSP container that enable the programmer to specify page setting to
include content from other resources & to specify custom tag libraries for use in a JSP.
Syntax:-

<%@ name attribute1=”….”, attribute2=”…”…%>

Directive Description

page Defines page settings for the JSP container to process.

include Causes the JSP container to perform a translation-time insertion of another resource's content. The file
included can be either static (HTML file) or dynamic (i.e., another tag file)

taglib Allows programmers to use new tags from tag libraries that encapsulate more complex functionality and
simplify the coding of a JSP.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 32]

Page Directive:-
The page directives specify global settings for the JSP in the JSP container. There can be many
page directives, provided that there is only one occurrence of each attribute.

Syntax:-
<%@ page
 [language="java"]
 [extends="package.class"]
 [import="{package.class | package.*}, ..."]
 [session="true|false"]
 [buffer="none|8kb|sizekb"]
 [autoFlush="true|false"]
 [isThreadSafe="true|false"]
 [info="text"]
 [errorPage="relativeURL"]
 [contentType="mimeType [; charset=characterSet]" |
 "text/html ; charset=ISO-8859-1"]
 [isErrorPage="true|false"]
 [pageEncoding="characterSet | ISO-8859-1"] %>

Scripting Elements

1. Declarations

A declaration declares one or more variables or methods that you can use in Java code
later in the JSP file.
Syntax
<%! Java declaration statements %>

Example,
<%! private int count = 0; %>
<%! int i = 0; %>

2. Expressions
An expression element contains a java expression that is evaluated, converted to a
String, and inserted where the expression appears in the JSP file.
Syntax
<%= expression %>

Example,
Your name is <%= request.getParameter("name") %>

3. Scriptlet
A scriptlet contains a set of java statements which is executed. A scriptlet can have java
variable and method declarations, expressions, use implicit objects and contain any other
statement valid in java.
Syntax
<% statements %>

Example
<%
 String name = request.getParameter("userName");
 out.println(“Hello “ + name);
%>

Implicit objects used in JSP

Implicit
object

Description

applicat
ion

A javax.servlet.ServletContext object that represents the container in which the JSP executes.
It allows sharing information between the jsp page's servlet and any web components with in

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 33]

the same application.

config
A javax.servlet.ServletConfig object that represents the JSP configuration options. As with
servlets, configuration options can be specified in a Web application descriptor (web.xml). The
method getinitparameter() is used to access the initialization parameters.

exceptio
n

A java.lang.Throwable object that represents an exception that is passed to a JSP error page.
This object is available only in a JSP error page.

out
A javax.servlet.jsp.JspWriter object that writes text as part of the response to a request. This
object is used implicitly with JSP expressions and actions that insert string content in a
response.

page An Object that represents the current JSP instance.

pageCont
ext

A javax.servlet.jsp.PageContext object that provides JSP programmers with access to the
implicit objects discussed in this table.

request

An object that represents the client request and is normally an instance of a class that
implements HttpServletRequest. If a protocol other than HTTP is used, this object is an
instance of a subclass of javax.servlet.Servlet-Request. It uses the getParameter() method to
access the request parameter.

response
An object that represents the response to the client and is normally an instance of a class that
implements HttpServletResponse (package javax.servlet.http). If a protocol other than HTTP is
used, this object is an instance of a class that implements javax.servlet.ServletResponse.

session A javax.servlet.http.HttpSession object that represents the client session information. This
object is available only in pages that participate in a session.

To run JSP files: all JSP code should be copied (Deployed) into webapps folder in the
tomcat server. To execute the file, type: http://server-ip:8080/Filename.jsp

Self Activity

1. Sample program : Simple display on browser

/* type this as first.jsp */
<html> <body>
<%
out.print("Hello World!");
%>
</body> </html>

2. Sample program to display current date
<%@ page language="java" import="java.util.*" %>
<html> <body>
Current Date time: <%=new java.util.Date()%>
</body> </html>

3. Sample program to add two numbers “AddNumbers.jsp”
<%@ page language="java"%>
<html> <head>
<title>Add number program in JSP</title>
</head>
<body>
<form method = “post” action = “AddNumbers.jsp”>
Enter Number 1 <input type =”text” name = “No1”>
Enter Number 2 <input type =”text” name = “No2”>
<input type="submit" value="Get Result"/>
<%
 int a=Integer.parseInt(request.getParameter(“No1”));
 int b=Integer.parseInt(request.getParameter(“No2”));
 int result=a+b;
 out.print("Additon of a and b :"+result);
%>

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 34]

</form> </body> </html>

Lab Assignments

SET A
 1. Write a Program to make use of following JSP implicit objects:

i. out: To display current Date and Time.
ii. request: To get header information.

iii. response: To Add Cookie
iv. config: get the parameters value defined in <init-param>
v. application: get the parameter value defined in <context-param>

vi. session: Display Current Session ID
vii. pageContext: To set and get the attributes.

viii. page: get the name of Generated Servlet

2. Create a JSP page which will accept the file extension and display all files in the
current directory having that extension. Each filename should appear as a hyperlink on
screen.

SET B
 1. Create a JSP page, which accepts user name in a text box and greets the user
according to the time on server side. Example: User name : ABC
Output : Good morning ABC / Good Afternoon ABC/ Good Evening ABC

2. Create a JSP page for an online multiple choice test. The questions are randomly
selected from a database and displayed on the screen. The choices are displayed using
radio buttons. When the user clicks on next, the next question is displayed. When the user
clicks on submit, display the total score on the screen.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 35]

Assignment 5: Multithreading

Objectives

 To create and use threads in java
 To demonstrate multithreading

Reading

You should read the following topics before starting this exercise:
1. Thread class
2. Runnable interface
3. Thread lifecycle
4. Thread methods

Ready Reference

Introduction

Nearly every operating system supports the concept of processes -- independently running
programs that are isolated from each other to some degree. Threading is a facility to allow
multiple activities to coexist within a single process. Java is the first mainstream
programming language to explicitly include threading within the language itself.

A process can support multiple threads, which appear to execute simultaneously and
asynchronously to each other. Multiple threads within a process share the same memory
address space, which means they have access to the same variables and objects, and they
allocate objects from the same heap.

Every Java program uses threads:-
Every Java program has at least one thread -- the main thread. When a Java program
starts, the JVM creates the main thread and calls the program's main() method within that
thread. The JVM also creates other threads that are mostly invisible to you -- for example,
threads associated with garbage collection, object finalization, and other JVM
housekeeping tasks. Other facilities create threads too, such as the AWT or Swing UI
toolkits, servlet containers, application servers, and RMI (Remote Method Invocation).

Thread Lifecycle:

The lifecycle of thread consist of several states which thread can be in. Each thread is in
one state at any given point of time.
1. New State: - Thread object was just created. It is in this state before the start ()

method is invoked. At this point the thread is considered not alive.
2. Runnable or ready state:- A thread starts its life from Runnable state. It enters this

state the time start() is called but it can enter this state several times later. In this state,
a thread is ready to run as soon as it gets CPU time.

3. Running State:- In this state, a thread is assigned a processor and is running. The
thread enters this state only after it is in the Runnable state and the scheduler assigns a
processor to the thread.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 36]

4. Sleeping state: - When the sleep method is invoked on a running thread, it enters the
Sleeping state.

5. Waiting State:- A thread enters the waiting state when the wait method is invoked on
the thread. When some other thread issues a notify () or notifyAll (), it returns to the
Runnable state().

6. Blocked State: - A thread can enter this state because it is waiting for resources that
are held by another thread – typically I/O resources.

7. Dead State:- This is the last state of a thread. When the thread has completed
execution that is its run () method ends, the thread is terminated. Once terminated, a
thread can’t be resumed.

Thread Creation
There are two ways to create thread in java;
1. Implement the Runnable interface (java.lang.Runnable)
2. By Extending the Thread class (java.lang.Thread)

1. Implementing the Runnable Interface

One way to create a thread in java is to implement the Runnable Interface and then
instantiate an object of the class. We need to override the run() method into our class
which is the only method that needs to be implemented. The run() method contains the
logic of the thread.

The procedure for creating threads based on the Runnable interface is as follows:
1. A class implements the Runnable interface, providing the run() method that will be
executed by the thread. An object of this class is a Runnable object.
2. An object of Thread class is created by passing a Runnable object as argument to the
Thread constructor. The Thread object now has a Runnable object that implements the
run() method.
3. The start() method is invoked on the Thread object created in the previous step. The
start() method returns immediately after a thread has been spawned.
4. The thread ends when the run() method ends, either by normal completion or by
throwing an uncaught exception.

Example:

class MyRunnable implements Runnable
{
 public void run() //define run method
 {
 //thread action
 }
}
...
MyRunnable r = new MyRunnable(); //create object
Thread t = new Thread(r); //create Thread object
t.start(); //execute thread

2. Extending java.lang.Thread class

A class can also extend the Thread class to create a thread. When we extend the Thread
class, we should override the run method to specify the thread action.

class MyThread extends Thread

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 37]

{
 public void run() //override run method
 {
 //thread action
 }
}
...
MyThread t = new MyThread(); //create Thread object
t.start(); //execute thread

Important methods of the Thread class:

Method Description

static int activeCount() Returns the number of active threads in the current
thread's thread group.

static Thread
currentThread()

Returns a reference to the currently executing thread
object.

String getName() Returns this thread's name.

int getPriority() Returns this thread's priority.
ThreadGroup getThreadGroup() Returns the thread group to which this thread belongs.

void interrupt() Interrupts this thread.

boolean isAlive() Tests if this thread is alive.

boolean isDaemon() Tests if this thread is a daemon thread.

boolean isInterrupted() Tests whether this thread has been interrupted.

void join() Waits for this thread to end.

void setName(String name) Changes the name of this thread.
void setPriority(int
newPriority) Changes the priority of this thread.

void sleep(long mSec) Causes the currently executing thread to sleep.

void start() Causes this thread to begin execution.

String toString() Returns a string representation of this thread, including
the thread's name, priority, and thread group.

static void yield() Causes the currently executing thread object to
temporarily pause and allow other threads to execute.

Thread priorities
Every thread has a priority. A priority is an integer from 1 to 10 inclusive, where 10 is the
highest priority, referred to as the maximum priority, and 1 is the lowest priority, also
known as the minimum priority. The normal priority is 5, which is the default priority for
each thread.

To set a thread’s priority, use the setPriority() method. You can use an integer from 1 to
10, or you can use static, final variables defined in the Thread class. These variables are
i. Thread.MIN_PRIORITY: Minimum priority i.e. 1
ii. Thread.MAX_PRIORITY: Maximum priority i.e. 10
iii. Thread.NORM_PRIORITY: Default priority i.e. 5

Interthread Communication
When multiple threads are running, it becomes necessary for the threads to communicate
with each other. The methods used for inter-thread communication are join(), wait(),
notify() and notifyAll().

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 38]

Self Activity
1. Below is a program that illustrates instantiation and running of threads using the
Runnable interface.

class RunnableThread implements Runnable {
 Thread runner;
 public RunnableThread() {
 }
 public RunnableThread(String threadName) {
 runner = new Thread(this, threadName); // (1) Create a new
thread.
 System.out.println(runner.getName());
 runner.start(); // (2) Start the thread.
 }
 public void run() {
 //Display info about this particular thread
 System.out.println(Thread.currentThread());
 }
}

public class RunnableExample {
 public static void main(String[] args) {
 Thread thread1 = new Thread(new RunnableThread(), "thread1");
 Thread thread2 = new Thread(new RunnableThread(), "thread2");
 RunnableThread thread3 = new RunnableThread("thread3");
 //Start the threads
 thread1.start();
 thread2.start();
 try {
 //delay for one second
 Thread.currentThread().sleep(1000);
 } catch (InterruptedException e) {
 }
 //Display info about the main thread
 System.out.println(Thread.currentThread());
 }
}

2. Creating multiple threads using the Thread class.
class MyThread extends Thread
{
 String message;
 MyThread(String message)
 {
 this.message = message;
 }
 public void run()
 {
 try
 {
 for(int i=1; i<=5; i++)
 {
 System.out.println(message + ”-” + i);
 Thread.sleep(5000); //sleep for 5 seconds
 }
 }
 catch(InterruptedException ie) { }
 }
}
public class MultipleThreadDemo
{
 public static void main(String[] args)
 {

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 39]

 MyThread t1 = new MyThread(“One”);
MyThread t2 = new MyThread(“Two”);
System.out.println(t1);
System.out.println(t2);
t1.start();
t2.start();

 }

}

Lab Assignments

SET A

1. Write a program that create 2 threads – each displaying a message (Pass the message
as a parameter to the constructor). The threads should display the messages continuously
till the user presses ctrl-c. Also display the thread information as it is running.

2. Write a java program to calculate the sum and average of an array of 1000 integers
(generated randomly) using 10 threads. Each thread calculates the sum of 100 integers.
Use these values to calculate average. [Use join method]

Set A Extra programs for practice

1. Define a thread called “PrintText_Thread” for printing text on command prompt for
 n number of times. Create three threads and run them. Pass the text and n as
parameters to the thread constructor. Example:
 i. First thread prints “I am in FY” 10 times
 ii. Second thread prints “I am in SY” 20 times
 iii. Third thread prints “I am in TY” 30 times

SET B

1. Write a program for a simple search engine. Accept a string to be searched. Search for
the string in all text files in the current folder. Use a separate thread for each file. The
result should display the filename, line number where the string is found.

2. Define a thread to move a ball inside a panel vertically. The Ball should be created
when user clicks on the Start Button. Each ball should have a different color and vertical
position (calculated randomly). Note: Suppose user has clicked buttons 5 times then five
balls should be created and move inside the panel. Ensure that ball is moving within the
panel border only.

SET C

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 40]

1. Write a java program to create a class called FileWatcher that can be given several
filenames. The class should start a thread for each file name. If the file exists, the thread
will write a message to the console and then end. If the filw does not exist, the thread will
check for the existence of its file after every 5 seconds till the file gets created.

2.Write a program to simulate traffic signal using threads.

3. Write a program to show how three thread manipulate same stack , two of them are
pushing elements on the stack, while the third one is popping elements off the
stack.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 41]

Assignment 6: Networking

Objectives

 Introduction to the java.net package
 Connection oriented transmission – Stream Socket Class

Reading

You should read the following topics before starting this exercise

1. Networking Basics
2. The java.net package – InetAddress class, URL class, URLConnection class
3. Connection oriented communication –ServerSocket class, Socket class

Ready Reference

Introduction
One of the important features of Java is its networking support. Java has classes that
range from low-level TCP/IP connections to ones that provide instant access to resources
on the World Wide Web. Java supports fundamental networking capabilities through
java.net package.

Networking Basics

Protocol

A protocol is a set of rules and standards for communication. A protocol specifies the
format of data being sent over the Internet, along with how and when it is sent. Three
important protocols used in the Internet are:
1. IP (Internet Protocol): is a network layer protocol that breaks data into small packets
and routes them using IP addresses.
2. TCP (Transmission Control Protocol): This protocol is used for connection-oriented
communication between two applications on two different machines. It is most reliable
and implements a connection as a stream of bytes from source to destination.
3. UDP (User Datagram Protocol): It is a connection less protocol and used typically for
request and reply services. It is less reliable but faster than TCP.

Addressing

1. MAC Address: Each machine is uniquely identified by a physical address, address of
the network interface card. It is 48-bit address represented as 12 hexadecimal
characters:
For Example: 00:09:5B:EC:EE:F2

2. IP Address: It is used to uniquely identify a network and a machine in the network. It
is referred as global addressing scheme. Also called as logical address. Currently used
type of IP addresses is: Ipv4 – 32-bit address and Ipv6 – 128-bit address.
For Example:
Ipv4 – 192.168.16.1 Ipv6 – 0001:0BA0:01E0:D001:0000:0000:D0F0:0010

3. Port Address: It is the address used in the network to identify the application on the
network.

Domain Name Service (DNS)

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 42]

It is very difficult to remember the IP addresses of machines in a network. Instead, we
can identify a machine using a “domain name” which is character based naming
mechanism. Example: www.google.com. The mapping between the domain name and the
IP address is done by a service called DNS.

URL

A URL (Uniform Resource Locator) is a unique identifier for any resource located on the
Internet. The syntax for URL is given as:
<protocol>://<hostname>[:<port>][/<pathname>][/<filename>[#<section>]]

For Example: http://java.sun.com/j2se/1.5.0/download.jsp

Sockets

A socket represents the end-point of the network communication. It provides a simple
read/write interface and hides the implementation details network and transport layer
protocols. It is used to indicate one of the two end-points of a communication link
between two processes. When client wishes to make connection to a server, it will create
a socket at its end of the communication link.
The socket concept was developed in the first networked version of UNIX developed at
the University of California at Berkeley. So sockets are also known as Berkeley Sockets.

Ports
A port number identifies a specific application running in the machine. A port number is a
number in the range 1-65535.
Reserved Ports: TCP/IP protocol reserves port number in the range 1-1023 for the use of
specified standard services, often referred to as “well-known” services.

Client-Server
It is a common term related to networking. A server is a machine that has some resource
that can be shared. A server may also be a proxy server. Proxy server is a machine that
acts as an intermediate between the client and the actual server. It performs a task like
authentications, filtering and buffering of data etc. it communicates with the server on
behalf of the client.
A client is any machine that wants to use the services of a particular server. The server is
a permanently available resource, while the client is free to disconnect after it’s job is
done.

The java.net Package
The java.net package provides classes and interfaces for implementing network
applications such as sockets, network addresses, Uniform Resource Locators (URLs) etc.
some important interfaces, classes and exceptions are :

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 43]

InetAddress Class
This class is used to represent numerical IP addresses and domain name for that address
i.e. it supports both numeric IP address and hostnames. There are no public constructors
for InetAddress class. Instead, there are static methods that return InetAddress instances.
Such methods are called as factory methods.

1. static InetAddress getLocalHost(): represents the IP address of the local host.
2. static InetAddress getByName(String hostname): represents the IP address of the

host name passed to it. hostName can be “www.google.com”, or hostname can be
“130.95.72.134”.

3. static InetAddress[] getAllByName(String hostname): represents an array of IP
addresses of the specified host name.

All of these methods throw UnknownHostException.
Some of the instance methods of the InetAddress class are:

1. byte[] getAddress(): returns the raw IP address of the InetAddress object.
2. String getHostAddress(): returns the IP address string.
3. String getHostName(): Gets the host name for the IP address.

URL Class
As the name suggests, it provides a uniform way to locate resources on the web. Every

browser uses them to identify information on the web. The URL class provides a simple
API to access information across net using URLs.
The class has the following constructors:
1. URL(String url_str): Creates a URL object based on the string parameter. If the

URL cannot be correctly parsed, a MalformedURLException will be thrown.
2. URL(String protocol, String host, String path): Creates a URL object with the

specified protocol, host and path.
3. URL(String protocol, String host, int port, String path): Creates a URL object

with the specified protocol, host, port and file path.
4. URL(URL urlObj, String urlSpecifier): Allows you to use an existing URL as a

reference context and then create a new URL from that context.

Some important methods are given below:
Method Description

URLConnection openConnection() This method establishes a connection and returns a stream

Object getContent() This method makes a connection and reads the contents

String getFile() This method returns the filename part of the URL.

String getHost() This method returns only the host name part from the URL.

String getPort() This method returns the port number part from the URL. This is
an optional component and returns –1 if not present.

String getProtocol() This method returns the name of the protocol used in URL.

String getRef() This method returns the anchor reference part from the URL.

int equals(Object) This method compares whether two URL objects represents the
same resource.

InputStream openStream() This method establishes a connection and returns a stream for
reading it.

URLConnection Class
This class is useful to actually connect to a website or resource on a network and get all
the details of the website. Using the openConnection() method, we should establish a
contact with the site on Internet. Method returns URLConnection object. Then using

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 44]

URLConnection class methods, we can display all the details of the website and also
content of the webpage whose name is given in URL.

Some important methods are:
Method Description

void connect() Establishes a connection between the application and the resource

Object getContent() Reads the contents of the resource

int getContentLength() Returns the value of the “content-length” header field, if such a field
exists. Returns –1 if no content-length field was specified.

String getContentType() Returns the value of the “content-type” header field, if such a field
exists. Returns null if no content-type field was specified.

long getExpiration() Returns the value of the “Expires” header field, expressed as the
number of seconds since January 1, 1970 GMT. If no such a header
field was specified, a value of zero will be returned.

InputStream getInputStream() Returns an InputStream object that reads the contents of the resource
pointed to by the URLConnection

OutputStream
getOutputStream()

Returns an OutputStream object that writes to the remote connection

URL getURL() Returns a URL object representing the location of the resource pointed
by the URL connection

long getDate() Returns the value of the “Date” header field, expressed as the number
of seconds since January 1, 1970 GMT. Returns 0 if not specified.

long getLastModified() Returns the date of the “Last-modified” header field, expressed as the
number of seconds since January 1 1970 GMT. Returns 0 if not
specified.

Connection Oriented Communication
Using Socket Java performs the network communication. Sockets enables to transfer data
through certain port. Socket class of Java makes it easy to write the socket programs.
Sockets are broken into two types:
1. Datagram sockets (UDP Socket)
Java uses java.net.DatagramSocket class to create datagram socket. The
java.net.DatagramPacket represents a datagram.

2. Stream Socket (TCP Socket)
Java uses java.net.Socket class to create stream socket for client and
java.net.ServerSocket for server.
ServerSocket Class
This class is used to create a server that listens for incoming connections from clients. It
is possible for client to connect with the server when server socket binds itself to a
specific port. The various constructors of the ServerSocket class are:
1. ServerSocket(int port): binds the server socket to the specified port number. If 0 is

passed, any free port will be used. However, clients will be unable to access the
service unless notified the port number.

2. ServerSocket(int port, int numberOfClients): Binds the server socket to the
specified port number and allocates sufficient space to the queue to support the
specified number of client sockets.

3. ServerSocket(int port, int numberOfClients, InetAddress address): Binds the
server socket to the specified port number and allocates sufficient space to the queue
to support the specified number of client sockets and the IP address to which this
socket binds.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 45]

The various methods of this class are:
Method Description

accept() Listens for socket connection. This is a blocking I/O operation, and will
not return until a connection is made. When a connection is established
a Socket object will be returned.

getLocalSocketAddresss() Returns local socket information.

bind() Binds a connection to destination.

close() Closes the connection.

getChannel() Returns channel for connection.

getInetAddress() Returns address of connection.

getLocalPort() Returns local port used for connection.

isBound() Checks whether socket is bound.

isClosed() Checks whether socket is closed.

toString() Converts server socket to string.

Socket Class
This class is used to represents a TCP client socket, which connects to a server socket and

initiate protocol exchanges. The various constructors of this class are:

1. Socket(InetAddress address, int port): creates a socket connected to the specified

IP address and port. Can throw an IOException.
2. Socket(String host, int port): creates a socket connected to the specified host and

port. Can throw an UnknownHostException or an IOException.

The various methods of this class are:
Method Description

getLocalSocketAddresss() Returns local socket information.

bind() Binds a connection to destination.

close() Closes the connection.

connect() Makes connection to destination

getChannel() Returns channel for connection.

getInetAddress() Returns address of connection.

getLocalPort() Returns local port used for connection.

getInputStream() Returns input stream for connection.

getKeepAlive() Returns indication of keep alive option enabled.

getLocalAddress() Returns local address

getOutputStream() Returns output stream for connection.

getPort() Returns remote used for connection.

getRemoteSocketAddress() Returns remote socket information.

isBound() Checks whether socket is bound.

isClosed() Checks whether socket is closed.

isConnected() Checks whether socket is connected.

toString() Converts server socket to string.

Self Activity

1. Sample program to find IP address of a web-site (Internet connection required)
/* Program to find the IPAddress of a website*/

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 46]

import java.io.*;
import java.net.*;
class AddressDemo
{
 public static void main(String args[]) throws IOException
 {
 BufferedReader br=new BufferedReader(new
 InputStreamReader(System.in));
 System.out.print(“Enter a website name: ”);
 String site=br.readLine();
 try
 {
 InetAddress ip=InetAddress.getByName(site);
 System.out.print(“The IP address is: ” + ip);
 }
 catch(UnknownHostException ue)
 {
 System.out.println(“WebSite not found”);
 }
 }
}

2. Sample program for client-server communication
/* Program to display socket information on client machine*/
import java.net.*;
import java.io.*;
public class Server
{
 public static void main(String args[])throws UnknownHostException ,
IOException
 {
 ServerSocket ss = new ServerSocket(4444);
 System.out.println("Server Started");
 Socket s = ss.accept();
 System.out.println("Connected to client");

 }
}

public class Client
{
 public static void main(String args[]) throws UnknownHostException,
IOException
 {
 Socket s = new Socket ("localhost", 4444);
 System.out.println (s.getInetAddress());
 System.out.println (s.getPort());
 System.out.println (s.getLocalPort());
 s.close();
 }
}

Lab Assignments

SET A

1. Write a client-server program which displays the server machine’s date and time on
the client machine.

T.Y.B.Sc (Comp. Sc.) Lab – II, Sem – II [Page 47]

2. Write a program which sends the name of a text file from the client to server and
displays the contents of the file on the client machine. If the file is not found, display an
error message.

SET B

1. Write a program to accept a list of file names on the client machine and check how
many exist on the server. Display appropriate messages on the client side.

2. Write a server program which echoes messages sent by the client. The process
continues till the client types “END”.

SET C
1. Write a program for a simple GUI based chat application between client and server.

Signature of the instructor Date / /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

	JavaLabBookSemI-1_2015-16
	JavaLabBookSem2_2015-16_New

